Child-size mannequin: Hands-on training spares real patients

May 16, 2011, Rice University

Rice University bioengineering students have modified a child-size training mannequin to give medical students hands-on pediatric experience so that real patients can be spared further stress and pain.

The students created Ped.IT, short for Pediatric Evaluation Device Intended for Training, as their senior design project at the request of doctors at Texas Children's Hospital (TCH) who have long recognized the need for students to get hands-on experience in pediatrics without having to subject young patients to additional probing and exams.

"I've been trying since 2003 to develop a mannequin, but I didn't have the bioengineering skills," said Amy Middleman, a pediatrician at TCH and associate professor at Baylor College of Medicine (BCM), which funded the project. "For a long time I've wanted to be able to teach medical students physical exam skills without having to use patients who are not feeling well and whose parents really aren't comfortable with medical students coming in to examine them."

Having tried and failed to work with medical device manufacturers, Middleman found her way to Rice's Oshman Engineering Design Kitchen (OEDK) and its director, Maria Oden, a professor in the practice of engineering education.

Oden pitched the idea to student teams at the start of the fall semester. The four students who stepped up -- Kshitij Manchanda, Zachary Henderson, Minsuk Kwak and Michelle Thorson -- succeeded in modifying a stock mannequin to TCH's specs, with help from their Rice adviser, Renata Ramos, a lecturer in bioengineering.

Ped.IT (which students have dubbed the "MiddleMannequin" in honor of their mentor) began as a hard-shell mannequin donated by a manufacturer, Laerdal. The team replaced the neck and midriff areas of the plastic with simulated skin and added the simulated liver and spleen, that TCH requested. The students went beyond the call of duty by adding simulated lymph nodes, and they left room for more organs to be added by future OEDK teams.

"There are a lot of conditions our mentors at Texas Children's would like to see in a future version of the mannequin, including an enlarged thyroid and tonsils," Henderson said. "They would also like joints that could be popped out of place and put back in."

Computer-controlled actuators in the 4-foot-long mannequin allow to change the organs from normal to enlarged states.

To create the effect, team members spent time at TCH feeling the livers and spleens of patients willing to help. Rice and Texas Children's are in close proximity in Houston's Texas Medical Center.

"We were completely confused about how a liver actually felt," Manchanda said. "Is it as hard as a rock? As soft as a pillow? I didn't know what the middle ground was. So when I felt them, I thought, 'Oh, this feels like Tempur-Pedic.' You could squeeze and it will come back to its shape."

Tempur-Pedic, best known as material for mattresses, was the right stuff for simulating organs. Another material, Dermasol, was used to simulate skin. "I feel like we've set a good groundwork for materials and the way to make a mannequin that is useful for the ," Thorson said.

"We don't have anything like this in pediatrics," said Jennifer Arnold, medical director of the TCH Pediatric Simulation Center and a BCM assistant professor of pediatrics. "In fact, there's nothing quite like this in the adult world, either. I think there are huge possibilities for commercialization."

Arnold is already talking with manufacturers. "Laerdal is interested," she said. "Now we get to take this back to them and say, 'Hey, do you think you would be interested in helping us mass-produce this, so that every medical school -- even, potentially, every nursing school -- could use this to train their students?'

"This is very sophisticated in what it does right now for physical diagnosis, so I'm very excited. I think there's a need."

"We have been just thrilled," Middleman said. "I've been dreaming about this for years, and it's the students who have really brought this to fruition. I could not be happier. I'm so excited that we've started on the way to developing this."

Explore further: Unique AED pads give hearts a second chance

Related Stories

Unique AED pads give hearts a second chance

April 26, 2011
An invention by Rice University bioengineering students in collaboration with the Texas Heart Institute (THI) is geared toward giving immediate second chances to arrhythmia victims headed toward cardiac arrest.

Bioengineering students' invention may help diagnose painful eye condition

April 25, 2011
Rice University bioengineering students responded to an ophthalmologist's cry for help with a device to diagnose dry eye, the itching and burning sensation that results when a person doesn't produce enough tears or the tears ...

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.