The '$1,000 genome' may cost $100,000 to understand

May 11, 2011

Advances in technology have almost lifted the curtain on the long-awaited era of the "$1,000 genome" — a time when all the genes that make up a person can be deciphered for about that amount – compared to nearly $1 million a few years ago. But an article in the current edition of Chemical & Engineering News (C&EN), ACS' weekly newsmagazine, raises the disconcerting prospect that a price tag of $100,000, by one conservative estimate, is necessary to analyze that genetic data so it can be used in personalized medicine – custom designing treatments that fit the patient's genetic endowment.

In the article, C&EN Senior Editor Rick Mullin explains that while the cost of sequencing genes has dropped dramatically, the cost of analyzing genomic data so that it can be put to practical use in medicine has hardly budged. Today, assessing the genetic predispositions to disease means costly data analysis by specialists from several research areas, including molecular and computational biology, genetics, pathology and clinical science.

Mullin, however, cites several trends in bioinformatics that are opening the door to collection and processing of genetic data more economically and efficiently. One trend is to incorporate genomic analysis in commercial drug discovery and development efforts from the beginning. Another way to ease the burden is to reduce the amount of data that is generated — one instrument company recently developed a brand-new sequencing technology that generates much smaller data files, for example. Pharma researchers also are collaborating and sharing data like never before, and some of them are making use of public cloud computing and free, open-source software.

Related Stories

Recommended for you

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.