Latest advances in gene therapy for ocular disease are highlighted in Human Gene Therapy

May 9, 2011, Mary Ann Liebert, Inc.
Human Gene Therapy, the official journal of the nine gene therapy societies is an authoritative peer-reviewed journal published monthly in print and online that presents reports on the transfer and expression of genes in mammals, including humans. For more information, and to read a sample chapter, please visit www.liebertpub.com/hum Credit: ©2011, Mary Ann Liebert, Inc., publishers

Disorders of the eye are excellent targets for gene therapy because the ocular environment is readily accessible, relatively easy to monitor, and sequestered from the rest of the body. A series of articles available online ahead of print in Human Gene Therapy, a peer-reviewed journal published by Mary Ann Liebert, Inc., highlight several exciting developments in ocular gene therapy. The articles are available free online at www.liebertpub.com/hum

Two review articles describe the unique opportunities for ocular gene therapy. "Gene Transfer for Neovascular " by Peter Campochiaro shows the potential for long-term delivery of proteins to control of blood vessels. In "Surgical Approaches to Gene and for Retinal Disease," Stout and Francis outline the many factors that contribute to the successful application of gene therapy to treat ocular disease.

Several research articles illustrate the broad scope of uses and delivery methods for ocular gene therapy. Miyazaki et al. show that neuroprotective gene therapy could reduce cell death in the retinas of rats exposed to damaging hypertension and infections in "Pigment Epithelium-Derived Factor Gene Therapy Targeting Retinal Ganglion Cell Injuries: Neuroprotection against Loss of Function in Two Animal Models." Goldmann et al. report on the therapeutic potential of a gene therapy drug to treat caused by a genetic mutation in "PTC124-Mediated Translational Readthrough of a Nonsense Mutation Causing Type 1C."

Fuchsluger et al. describe gene therapy to prevent cell death in the cornea, in "Corneal Endothelial Cells are Protected from Apoptosis by Gene Therapy." Mao et al. describe the delivery of a normal copy of the rhodopsin gene to mice with ocular disease caused by a mutated RHO gene and its ability to slow the rate of in "AAV Delivery of Wild-Type Rhodopsin Preserves Retinal Function in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa."

In the Brief Report "Gene Therapy in Ophthalmology: Validation on Cultured Retinal Cells and Explants from Postmortem Human Eyes," Fradot and colleagues show how gene therapy strategies can be developed and refined using cultured cells and explants from human eyes harvested after death to limit research studies done in primates.

"The most dramatic clinical success of in vivo gene therapy has been realized using AAV vectors in the treatment of a rare inherited form of congenital blindness; some level of functional improvement was realized in three independent trials. A number of scientists from around the world are progressing in vivo gene therapy into a number of other ocular disorders. This issue of the Journal captures some of these exiting new directions," says James M. Wilson, M.D., Ph.D., Editor-in-Chief, and Director of the Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia.

Related Stories

Recommended for you

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

The coming of age of gene therapy: A review of the past and path forward

January 11, 2018
After three decades of hopes tempered by setbacks, gene therapy—the process of treating a disease by modifying a person's DNA—is no longer the future of medicine, but is part of the present-day clinical treatment toolkit. ...

Large-scale study to pinpoint genes linked to obesity

January 10, 2018
It's not just diet and physical activity; your genes also determine how easily you lose or gain weight. In a study published in the January issue of Nature Genetics, researchers at the Icahn School of Medicine at Mount Sinai ...

Identical twins can share more than identical genes

January 9, 2018
An international group of researchers has discovered a new phenomenon that occurs in identical twins: independent of their identical genes, they share an additional level of molecular similarity that influences their biological ...

Hereditary facial features could be strongly influenced by a single gene variant, a new study finds

January 9, 2018
Do you have your grandmother's eyes? Or your father's nose? A new study by the Universities of Oxford and Surrey has uncovered variations in singular genes that have a large impact on human facial features, paving the way ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.