A new program for neural stem cells

May 12, 2011
Transplantation of reprogrammed neural stem cells into the brains of genetically modified mice, which cannot form myelin. The stem cells develop oligodendrocytes (green), which form myelin (red). Credit: Max Planck Institute for Brain Research

German researchers succeed in obtaining brain and spinal cord cells from stem cells of the peripheral nervous system.

Neural stem cells can do a lot, but not everything. For example, brain and are not usually generated by neural stem cells of the peripheral nervous system, and it is not possible to produce cells of the peripheral nervous system from the stem cells of the brain. However, researchers from the Max Planck Institute for in Frankfurt and the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have now succeeded in producing central from of the peripheral nervous system. They found that if peripheral stem cells are maintained under defined growth conditions, they generate oligodendrocytes, which form the myelin layer that surrounds the found in the brain and spinal cord.

The mammalian nervous system consists of a central (brain, ) and peripheral nervous system (e.g. nerves and sensory ganglia). Although the two systems are very closely interlinked, they differ anatomically and consist of different cell types. The cell types of the peripheral nervous system originate from in the embryo called the . To date, it was believed that these neural crest stem cells could generate the neurons and support cells, known as glial cells, of the peripheral nervous system, but not the cells of the .

Environmental conditions clearly determine the kind of cells into which the neural crest stem cells develop. Together with colleagues from Paris, the Freiburg- and Frankfurt-based scientists succeeded in demonstrating that, under modified conditions, these stem cells can also generate cells of the central nervous system. They exposed stem cells from the peripheral nervous system of embryonic or postnatal mice to different culture conditions. In addition to neurons, the neural crest stem cells also developed into different types of of the central nervous system, including oligodendrocytes and astrocytes. "The culture medium reprograms the neural crest stem cells in such a way that they change their identity. This worked without genetic modification of the cells," explains Hermann Rohrer from the Max Planck Institute for Brain Research.

Factors in the culture medium clearly activated a different genetic program so that cell types developed from the stem cells, which normally would not. The scientists do not yet understand the precise factors at work here. However, there are some indications that fibroblast growth factor (FGF) is involved in this transformation.

In the brains of mice at different developmental stages, the reprogrammed stem cells mainly developed into oligodendrocytes, which form the myelin layer around the neurons of the central nervous system and are, therefore, indispensable for the transmission of electrical stimuli. Transplantation experiments carried out by the researchers on genetically modified mice that do not produce myelin and have severe neurological defects proved that the new oligodendrocytes can also assume this task. "The reprogrammed stem cells can form cells of the central nervous system, and the new cells can permanently integrate into this system," says Verdon Taylor of the Max Planck Institute of Immunobiology and Epigenetics.

It is not yet clear, to what extent these basic research findings will contribute to the development of cell therapy for humans. This would require that similar stem cells are present and accessible in the peripheral nervous system of humans, and that these can be propagated and reprogrammed in culture. "At present, we only know that these stem cells in mice also have the potential to produce oligodendrocytes," says Hermann Rohrer. The scientists would now like to investigate in greater detail which molecular mechanisms are responsible for the reprogramming of the stem cells, whether neural crest stem cells also exist in the of adult mice and what kind of conditions are required to enable the reprogramming of these cells.

More information: Peripheral nervous system progenitors can be reprogrammed to produce myelinating oligodendrocytes and repair brain lesions, Ellen Binder, Marion Rukavina, Hessameh Hassani, Marlen Weber, Hiroko Nakatani, Tobias Reiff, Carlos Parras, Verdon Taylor, and Hermann Rohrer, Journal of Neuroscience, April 27, 2011, DOI:10.1523/JNEUROSCI.0129-11.2011

Related Stories

Recommended for you

Scientists capture first image of major brain receptor in action

July 24, 2017
Columbia University Medical Center (CUMC) researchers have captured the first three-dimensional snapshots of the AMPA-subtype glutamate receptor in action. The receptor, which regulates most electrical signaling in the brain, ...

Research identifies new brain death pathway in Alzheimer's disease

July 24, 2017
Alzheimer's disease tragically ravages the brains, memories and ultimately, personalities of its victims. Now affecting 5 million Americans, Alzheimer's disease is the sixth leading cause of death in the U.S., and a cure ...

Illuminating neural pathways in the living brain

July 24, 2017
Using light alone, scientists from the Max Planck Institute of Neurobiology in Martinsried are now able to reveal pairs or chains of functionally connected neurons under the microscope. The new optogenetic method, named Optobow, ...

Study suggests link between autism, pain sensitivity

July 24, 2017
New research by a UT Dallas neuroscientist has established a link between autism spectrum disorder (ASD) and pain sensitivity. 

Eye test could help diagnose autism

July 24, 2017
A new study out in European Journal of Neuroscience could herald a new tool that helps physicians identify a sub-group of people with Autism spectrum disorders (ASD). The test, which consists of measuring rapid eye movements, ...

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.