Obesity creates wimpy rats

May 9, 2011

(Medical Xpress) -- Obesity appears to impair normal muscle function in rats, an observation that could have significant implications for humans, according to Penn State researchers.

"Our findings demonstrate that obesity involves more than accumulating excess fat and carrying ," said Rudolf J. Schilder, American Physiological Society postdoctoral fellow in physiological genomics, Penn State College of Medicine. "We show that, during the development of obesity, skeletal muscles fail to adjust their molecular composition appropriately to the increasing . Consequently, the muscles of obese mammals are not properly 'tuned' to the higher body weight they carry."

Schilder and his colleagues examined whether normal mammalian perceives the amount of weight it is carrying, and whether it makes physiological adjustments to compensate for more or less weight. They theorized that this ability of muscle may be affected in obesity, as obese mammals typically suffer from reduced mobility and .

The study, published in a recent issue of the , used both healthy and genetically obese rats to determine how the expression of troponin T -- a gene that codes for a protein essential to muscle function -- varied as rats gained weight.

The research shows that the regulation of troponin T expression in a way appropriate for given body weights is impaired in obese rats.
"These results may explain why and are impaired in obese humans, and hence perhaps why it is so difficult to lose excess weight and recover from obesity," said Schilder.

The researchers first demonstrated that troponin T expression varied with body weight during normal growth. Then they artificially increased the body weight of one group of rats by 30 percent using a custom-made weighted vest. Externally applied weight caused a shift in the muscle troponin T expression, matching that of animals whose actual body weight was 30 percent higher. In contrast, troponin T expression did not respond to a similar increase in body weight in the obese rats.

Troponin T expression was examined in the muscles from a total of 68 rats. Nine were genetically obese, 19 were weight loaded and the rest of the rats served as controls. The weight-loaded wore the vests for five days.

"Our study is likely to stimulate a quest to determine the pathways and mechanisms that sense body weight and control muscle , as this could ultimately provide new therapeutic approaches to alleviate these obesity-associated problems," said Schilder.

Also working on this research were Scot R. Kimball, professor of cellular and molecular physiology; Leonard S. Jefferson, Evan Pugh Professor of cellular and molecular physiology and chair, both at Penn State College of Medicine; and James H. Marden, professor of biology, Penn State Eberly College of Science.

The National Institutes of Health, the National Science Foundation and the American Physiological Society supported this research.

Related Stories

Recommended for you

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Brain cells found to control aging

July 26, 2017
Scientists at Albert Einstein College of Medicine have found that stem cells in the brain's hypothalamus govern how fast aging occurs in the body. The finding, made in mice, could lead to new strategies for warding off age-related ...

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.