High-impact radiopeptide therapy halts neuroendocrine cancer

June 6, 2011, Society of Nuclear Medicine

Research introduced at SNM's 58th Annual Meeting could be a sign of hope for patients with neuroendocrine cancer not responding well to standard therapies. Most radiotherapies use medical isotopes that emit beta radiation. The therapy in this study employs alpha particles, which have potential for higher potency. In fact, one single atom could be enough to kill an entire cancer cell.

"Until now, the usage of alpha radionuclides was limited to direct injection into the tumor or the use of only very small doses," says Clemens Kratochwil, MD, lead author of the study from the University of Heidelberg, Heidelberg, Germany, and the Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe, Germany. "This is the first patient study of dose escalation involving the injection of a specific tumor-targeted peptide tagged with an alpha-emitter. This provides additional options for patients with therapy-resistant cancers; further studies could expand the development and safe use of alpha-emitter therapies for patients with other forms of ."

Neuroendocrine cancer affects cells that translate neuronal information into hormonal information. Hormones and neuroendocrine control a range of physiological processes, including efficiency of digestion, , blood flow and the reproductive cycle. This type of cancer can therefore affect organs including the pancreas, the bowel, the and the lungs, among many others. Neuroendocrine cancer can go undetected for years and spread (metastasize) to other organs, especially the liver, bones and lymph nodes.

Standard therapy for neuroendocrine cancer is surgery and chemotherapy, as well as radiotherapy. Radiotherapy uses to kill by damaging their DNA. More targeted therapies come in the form of radioimmunotherapy and radiopeptide therapy, comprising a radionuclide bound or used in conjunction with an antibody or peptide that specifically targets the cancer tissue. A range of radionuclides, also known as , are used depending on the type of cancer, the kind of tumor and stage of disease. Most radiotherapies use beta-emitting particles, but more recently researchers have been conducting studies regarding the use of alpha-emitting particles, which have a very near-range and high-energy effect where administered. The benefit of alpha-therapy is its high cytotoxicity, or ability to kill cells—both cancerous and healthy cells. For this reason, scientists must test the safety of alpha-therapy and identify the most appropriate dose to avoid toxicity in normal tissues.

This study is focused on a cancer therapy called 213Bi-DOTATOC peptide receptor alpha-therapy. DOTATOC, as a tumor-targeting probe labeled with different radionuclides, has been under investigation in the University Hospital of Heidelberg for more than a decade. This peptide analog mimics the endocrine-system regulating hormone somatostatin. The latest advance for the treatment is the use of alpha-emitter 213 Bismuth, a radionuclide that is bound to DOTATOC and injected. Researchers administered the therapy to 14 patients with neuroendocrine liver metastases resistant to previous treatment with beta-particle peptide therapy. The therapy was found to be highly effective for targeting neuroendocrine tumors and inducing remission of metastases without dangerous toxicity to healthy tissues. Further studies are scheduled to escalate dosage further for even greater cancer-killing power for metastatic neuro-endocrine cancer patients. Additional alpha-emitter therapy studies are also continuing to determine their efficacy for treating other therapy-resistant cancers.

More information: Scientific Paper 29: C. Kratochwil, F. Giesel, A. Morgenstern, F. Bruchertseifer, W. Mier, C. Zechmann, C. Apostolidis, U. Haberkorn, University Hospital, Heidelberg, Germany; Institute for Transuranium Elements, European Commission JRC, Karlsruhe, Germany; "Regional 213Bi-DOTATOC peptide receptor alpha-therapy in patients with neuroendocrine liver metastases refractory to beta-radiation," SNM's 58th Annual Meeting, June 4-8, 2011, San Antonio, TX.

Related Stories

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.