Scientists find link between master gene and neurodegenerative disorders

June 24, 2011, CORDIS
Scientists find link between master gene and neurodegenerative disorders

Garbage comes in all shapes and sizes. Cells, the body's functional units of life, also produce 'garbage' - debris and dysfunctional elements the body must get rid of. Failure to dispose of this garbage could trigger various neurodegenerative disorders in adult life, including Parkinson's disease, and rare genetic diseases in children. The latter diseases are called lysosomal storage disorders and include Fabry and Batten diseases.

An international team of scientists, funded in part by a European Research Council (ERC) grant under the EU's Seventh Framework Programme (FP7), has discovered a master gene that controls both the that break up the debris as well as the cellular compartments that encapsulate the material and fuse with lysosomes to completely dispose of the debris. The findings, presented in the journal Science, could lead to the development of new ways to fight these diseases, both for the young and old.

'The master gene (transcription factor EB or TEFB) controls the function of lysosomes (organelles in the cell that break down waste and cellular debris) and controls the function of autophagosomes [cellular compartments],' explains Dr Andrea Ballabio of the Telethon Institute of Genetics and Medicine (TIGEM) in Naples, Italy, a professor of molecular and at Baylor College of Medicine (BCM) and the Texas Children's Neurological Research Institute (NRI) in the United States and senior author of the study. 'Defects in this process are also implicated in neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.'

Professor Ballabio equates the autophagosomes to 'garbage trucks' that transfer the debris they pick up to the lysosomes that 'incinerate' it. Finding the single with the capacity to control this activity is 'one of the few examples of coordinated regulation of two cellular compartments,' he points out.

The researchers had already determined that TEFB regulates the creation and development of lysosomes, effectively increasing their number. The question for them was to find out how the gene could be used to boost the cell's capacity to dispose of waste products. The key link was getting more autophagosomes.

'We thought there would be no point in increasing the incinerators unless we could also increase the garbage trucks,' Professor Ballabio says. TEFB, say the researchers, controls both activities.

Commenting on the research, lead author Dr Carmine Settembre, also from TIGEM, BCM and NRI, says: 'This understanding paves the way to finding drugs to activate the process.' Professor Ballabio goes on to say how brilliant a tool this gene is. 'By modulating the activity of a single gene, we can induce the activity of a variety of other genes that are involved in the process of degradation.'

Researchers from the Cambridge Institute for Medical Research of the University of Cambridge in the United Kingdom contributed to this study.

Commenting on the trans-Atlantic collaboration, NRI Director Dr Huda Zoghbi says: 'Collaborations are the best way to accelerate discovery and advance the search for ways to impact neurological disorders. This partnership between NRI, BCM and Telethon Institute of Genetics and Medicine is a fine example of the power of collaborations.'

Explore further: Master gene may shed new light on lysosomal and neurodegenerative disorders

Related Stories

Master gene may shed new light on lysosomal and neurodegenerative disorders

May 26, 2011
Cells, like ordinary households, produce "garbage" – debris and dysfunctional elements – that need disposal. When the mechanism for taking out this garbage fails, rare genetic diseases called lysosomal storage disorders ...

Recommended for you

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.