New software 'hearing dummies' pave the way for tailor-made hearing aids

June 13, 2011, Engineering and Physical Sciences Research Council

New software 'hearing dummies' are part of cutting-edge research that promises to revolutionise the diagnosis and treatment of hearing impairments.

The work could also be used in the long-term to develop a radical new type of hearing aid that can be customised using the hearing dummy to meet the different needs of individual patients. If the procedures gain clinical acceptance, a device could reach the market within 4 years.

The research is being carried out by a team at the University of Essex with funding from the Engineering and Physical Sciences Research Council (EPSRC).

The aim has been to enable to be carefully calibrated so that they address the particular underlying hearing condition affecting each individual patient; and to ensure that they tackle the most common problem affecting hearing-impaired people – sound interference, which leads to an inability to follow conversations in noisy environments.

People also differ in how much they are affected by noisy environments, which is why developing a tailor-made approach represents such a significant breakthrough.

"Today's hearing aids don't help to separate sounds – they just amplify them," says Professor Ray Meddis, of the University's Department of Psychology, who has led the work. "So they often make everything too noisy for the wearer, especially in social situations like parties, and some wearers still can't make out what people are saying to them. They find the whole experience so uncomfortable that they end up taking their hearing aids out! This discourages them from going to social occasions or busy environments and may result in them withdrawing from society."

The first key advance has been the development of unique computer models (or 'hearing dummies') that can use the information collected during the tests to simulate the precise details of an individual patient's hearing.

By altering individual mathematical algorithms within the computer models, the dummy's hearing capabilities can be adjusted until they perfectly match the hearing characteristics of the patient (e.g. where there is damage to different parts of the ear). This will then indicate the likely cause of the patient's hearing impairment.

"In the same way that a tailor's dummy is used to measure and fit a garment for a particular person, our software dummy is used to gauge a patient's hearing requirements so that their hearing aid can then be programmed to suit their needs right at the beginning of the process without the need to come back for further time consuming adjustments to their device".

The second key advance achieved by Professor Meddis and his team has been in the design of new hearing tests. Current clinical practice focuses on 'threshold testing' to identify how quiet a sound can be while remaining audible, and hearing aids are generally prescribed solely on the basis of these tests.

The new tests, which are quicker and easier to use, concentrate on higher sound levels more typical of everyday life.

"Our work has shown that, when it comes to hearing impairment, no two people are alike," says Professor Meddis. "That's why two people with apparently similar hearing thresholds often react very differently to their hearing aids."

The third advance involves the early stages of developing a new kind of hearing aid that simulates how a normal ear works. The aim of this new aid is to restore the particular aspects of hearing that are faulty and to do this as naturally as possible.

In collaboration with hearing aid manufacturer Phonak, Professor Meddis and his team have now designed a lab-scale version of such a device which is already being tested on patients. The next step is to work with a manufacturer to fine-tune the software and then miniaturise the technology so that the device can be reduced to conventional hearing aid scale.

"Traditionally, the fitting of hearing aids has focused on symptoms, not causes," Professor Meddis comments. "Our aim has been to break through the limitations of current hearing aids and current hearing assessment procedures, and so ultimately enable hearing impaired people to play a much fuller role in society."

Explore further: A hearing aid you install yourself

Related Stories

A hearing aid you install yourself

May 17, 2011
Melbourne researchers have invented a small, smart, self-managed hearing aid that outperforms most conventional hearing aids for less than half the price.

Study: Lowering cost doesn't increase hearing aid purchases

May 10, 2011
Lowering the cost of hearing aids isn't enough to motivate adults with mild hearing loss to purchase a device at a younger age or before their hearing worsens, according to researchers at Henry Ford Hospital.

Recommended for you

Best of Last Year—The top Medical Xpress articles of 2017

December 20, 2017
It was a good year for medical research as a team at the German center for Neurodegenerative Diseases, Magdeburg, found that dancing can reverse the signs of aging in the brain. Any exercise helps, the team found, but dancing ...

Pickled in 'cognac', Chopin's heart gives up its secrets

November 26, 2017
The heart of Frederic Chopin, among the world's most cherished musical virtuosos, may finally have given up the cause of his untimely death.

Sugar industry withheld evidence of sucrose's health effects nearly 50 years ago

November 21, 2017
A U.S. sugar industry trade group appears to have pulled the plug on a study that was producing animal evidence linking sucrose to disease nearly 50 years ago, researchers argue in a paper publishing on November 21 in the ...

Female researchers pay more attention to sex and gender in medicine

November 7, 2017
When women participate in a medical research paper, that research is more likely to take into account the differences between the way men and women react to diseases and treatments, according to a new study by Stanford researchers.

Drug therapy from lethal bacteria could reduce kidney transplant rejection

August 3, 2017
An experimental treatment derived from a potentially deadly microorganism may provide lifesaving help for kidney transplant patients, according to an international study led by investigators at Cedars-Sinai.

Exploring the potential of human echolocation

June 25, 2017
People who are visually impaired will often use a cane to feel out their surroundings. With training and practice, people can learn to use the pitch, loudness and timbre of echoes from the cane or other sounds to navigate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.