New agents show promise for treating aggressive breast cancers

July 18, 2011
Professors Jane Visvader (left) and Geoff Lindeman from the Walter and Eliza Hall Institute in Melbourne, Australia, have shown that BH3 mimetics, a new class of anti-cancer agent, could hold promise for treating some of the most aggressive forms of breast cancer. Credit: Walter and Eliza Hall Institute

Some of the most aggressive forms of breast cancer are more vulnerable to chemotherapy when it is combined with a new class of anti-cancer agent, researchers from the Walter and Eliza Hall Institute have shown.

ABT-737 is one of a new class of anti-cancer agents called BH3 mimetics that target and neutralise the so-called Bcl-2 proteins in . Bcl-2 proteins act to 'protect' the cells after they have been damaged by , and prevent the cancer cells from dying.

Professors Geoff Lindeman and Jane Visvader, who led the research with colleagues Dr Samantha Oakes and Dr François Vaillant from the institute's Stem Cells and Cancer division, said that the BH3 mimetics showed promise for treating breast cancers, including 'triple negative' cancers. Their research is published today in the Proceedings of the National Academy of Sciences.

Triple negative breast cancers are so-called because they test negative for oestrogen, progesterone and HER2 receptors, and cannot be treated with hormone therapy or trastuzumab. They account for up to 20 per cent of all breast cancers and are typically aggressive with a poor prognosis.

Dr Lindeman said that early results suggest navitoclax (an orally-available BH3 mimetic) could provide new hope for treating some breast cancers that are not candidates for other currently available treatments.

"ABT-737 targets proteins from the Bcl-2 family, which are found at high levels in up to 70 per cent of breast cancers," Dr Lindeman said. "We have shown that breast tumours that have high levels of Bcl-2 respond well to treatment with ABT-737 when used in combination with a conventional drug."

ABT-737 and navitoclax were discovered by Abbott scientists and are based on the discovery made at the Walter and Eliza Hall Institute in the 1980s that Bcl-2 is a 'pro-survival' responsible for preventing cell death in healthy and diseased cells. ABT-737 and navitoclax are not yet available for patient treatment, but navitoclax is currently in phase II clinical trials to establish its efficacy in treating some types of leukaemia and lymphoma. Navitoclax is being jointly developed by Abbott and Genentech, Inc.

Dr Visvader said combined treatment with ABT-737 and docetaxel (a commonly used chemotherapy drug for treating ) in mice transplanted with human breast cancer cells improved tumour response and survival rates, when compared to docetaxel as a single agent. ABT-737 alone was not effective in treating cancers with high levels of Bcl-2, nor was it effective in treating cancers that did not express Bcl-2.

"The research suggests that these agents make the cancer cells more vulnerable to chemotherapy," Dr Visvader said. "We are particularly excited that the research shows a good response in Bcl-2-expressing breast cancer, including basal-like breast cancer, which is often the most aggressive and hardest to treat."

Dr Lindeman said the research could lead to the development of new treatment regimens that make resistant and difficult-to-treat breast cancers more vulnerable to conventional chemotherapy treatments. "We have had a good result in pre-clinical models of disease, but we are still a way off this being used in humans," Dr Lindeman, who is also an oncologist at The Royal Melbourne Hospital, said. "We hope that these results could see a clinical trial of navitoclax for treating breast cancer with high Bcl-2 levels within the next few years."

Related Stories

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.