Research identifies genes vital to preventing childhood leukemia

July 18, 2011

Researchers at The University of Western Ontario have identified genes that may be important for preventing childhood leukemia. Acute lymphoblastic leukemia (ALL) is a cancer of the blood that occurs primarily in young children. It's frequently associated with mutations or chromosomal abnormalities that arise during embryonic or fetal development. Working with mice, researchers led by Rodney DeKoter identified two key genes that appear essential in the prevention of B cell ALL, the most common form of ALL in children. The study is published online in Blood, the Journal of the American Society of Hematology.

In the study, mice were generated with mutations in two genes called PU.1 and Spi-B. Mutation of either PU.1 or Spi-B individually had little effect. Unexpectedly, mutation of both genes resulted in 100% of the mice developing ALL. Eighty percent of ALL cases in children are of the B cell type. The study found PU.1 and Spi-B have unanticipated functional redundancy as "tumor suppressor" genes that prevent leukemia.

"You can think of PU.1 and Spi-B proteins as brakes on a car. If the main brake (PU.1) fails, you still have the emergency brake (Spi-B). However, if both sets of brakes fail, the car speeds out of control," explains DeKoter, an associate professor in the Department of Microbiology & Immunology at Western's Schulich School of Medicine & Dentistry. "And uncontrolled cell division is an important cause of leukemia."

PU.1 is an essential regulator in the development of the immune system, and mutations in this gene have been previously associated with human ALL. DeKoter hopes these studies will ultimately lead to improved, less toxic, therapies for . Currently, about 80% of ALL patients go into complete remission when treated with aggressive chemotherapy.

More information: http://bloodjournal.hematologylibrary.org/content/early/2011/07/15/blood-2011-02-335539.abstract

Related Stories

Recommended for you

Genome analysis with near-complete privacy possible, say researchers

August 17, 2017
It is now possible to scour complete human genomes for the presence of disease-associated genes without revealing any genetic information not directly associated with the inquiry, say Stanford University researchers.

Science Says: DNA test results may not change health habits

August 17, 2017
If you learned your DNA made you more susceptible to getting a disease, wouldn't you work to stay healthy?

Genetic variants found to play key role in human immune system

August 16, 2017
It is widely recognized that people respond differently to infections. This can partially be explained by genetics, shows a new study published today in Nature Communications by an international collaboration of researchers ...

Phenotype varies for presumed pathogenic variants in KCNB1

August 16, 2017
(HealthDay)—De novo KCNB1 missense and loss-of-function variants are associated with neurodevelopmental disorders, with or without seizures, according to a study published online Aug. 14 in JAMA Neurology.

Active non-coding DNA might help pinpoint genetic risk for psychiatric disorders

August 16, 2017
Northwestern Medicine scientists have demonstrated a new method of analyzing non-coding regions of DNA in neurons, which may help to pinpoint which genetic variants are most important to the development of schizophrenia and ...

Evolved masculine and feminine behaviors can be inherited from social environment

August 15, 2017
The different ways men and women behave, passed down from generation to generation, can be inherited from our social environment - not just from genes, experts have suggested.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.