Researchers describe genetic basis of rare human diseases

July 8, 2011
This is a cilia. Credit: UCSF

Researchers at the University of California, San Francisco and in Michigan, North Carolina and Spain have discovered how genetic mutations cause a number of rare human diseases, which include Meckel syndrome, Joubert syndrome and several other disorders.

The work gives doctors new possible targets for designing better diagnostics to detect and drugs to treat these diseases, which together affect perhaps one in 200 people in the United States.

On the surface, these diseases look very different. Meckel syndrome causes deadly brain malformations and kidney cysts. Joubert syndrome strikes people with severe movement disorders. But the work of the UCSF-led team, published this week in the journal Nature Genetics, found similarities between the diseases at the molecular level.

"We think these diseases have a common underlying cause," said UCSF developmental biologist Jeremy Reiter. "They are fundamentally caused by defects in 'antenna' on cells."

Seen in Twins from Bangladesh

Technically known as cilia, these are that dangle off cells and, like tiny receivers, allow the cells to explore and interact with their environment. Found everywhere from the brain to the eyes to the lungs in humans, these antennae also exist in creatures as diverse as gorillas, gnats, aardvarks and algae.

What cilia do depends on where they are in the body. In the eyes or deep within the nostrils, they are covered with sensory proteins and help capture light and odors, forming the basis of our senses of sight and smell. In the lungs, cilia move, helping to expel foreign particles from the airways. They also lend mobility to sperm.

This wide range of functions is also reflected in people with genetic disorders like Joubert syndrome, which affects cilia in specific parts of their body. People with these diseases suffer symptoms related to what those cilia do, such things as , infertility or inability to smell.

Reiter and his colleagues looked at the DNA of twins from Bangladesh born with Joubert syndrome, and they showed how certain mutations associated with the disease work.

They found that these mutations lead to malfunctions in a protein called Tectonic1, one of several that forms a crucial collar around the base of a cilium.

You can think of the collar as a turnstile at the foot of a long bridge connecting a remote island to the mainland. If the turnstile is damaged, traffic stops, and there is no way to drive goods and passengers out to the island.

Similarly, mutations in Tectonic1 prevent the collar from forming correctly, and this causes defects in the cilia within the brain and ultimately leads to Joubert syndrome, Reiter and his colleagues determined. In cells, they showed that restoring a non-mutated form of the protein restores the function of the cilia.

Explore further: New gene that causes intellectual disability discovered

More information: "A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition" Nature Genetics. dx.doi.org/10.1038/ng.891

Related Stories

New gene that causes intellectual disability discovered

May 12, 2011
A new study involving Canada's Centre for Addiction and Mental Health (CAMH) has found a gene connected with a type of intellectual disability called Joubert syndrome.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.