Researchers describe genetic basis of rare human diseases

July 8, 2011, University of California, San Francisco
This is a cilia. Credit: UCSF

Researchers at the University of California, San Francisco and in Michigan, North Carolina and Spain have discovered how genetic mutations cause a number of rare human diseases, which include Meckel syndrome, Joubert syndrome and several other disorders.

The work gives doctors new possible targets for designing better diagnostics to detect and drugs to treat these diseases, which together affect perhaps one in 200 people in the United States.

On the surface, these diseases look very different. Meckel syndrome causes deadly brain malformations and kidney cysts. Joubert syndrome strikes people with severe movement disorders. But the work of the UCSF-led team, published this week in the journal Nature Genetics, found similarities between the diseases at the molecular level.

"We think these diseases have a common underlying cause," said UCSF developmental biologist Jeremy Reiter. "They are fundamentally caused by defects in 'antenna' on cells."

Seen in Twins from Bangladesh

Technically known as cilia, these are that dangle off cells and, like tiny receivers, allow the cells to explore and interact with their environment. Found everywhere from the brain to the eyes to the lungs in humans, these antennae also exist in creatures as diverse as gorillas, gnats, aardvarks and algae.

What cilia do depends on where they are in the body. In the eyes or deep within the nostrils, they are covered with sensory proteins and help capture light and odors, forming the basis of our senses of sight and smell. In the lungs, cilia move, helping to expel foreign particles from the airways. They also lend mobility to sperm.

This wide range of functions is also reflected in people with genetic disorders like Joubert syndrome, which affects cilia in specific parts of their body. People with these diseases suffer symptoms related to what those cilia do, such things as , infertility or inability to smell.

Reiter and his colleagues looked at the DNA of twins from Bangladesh born with Joubert syndrome, and they showed how certain mutations associated with the disease work.

They found that these mutations lead to malfunctions in a protein called Tectonic1, one of several that forms a crucial collar around the base of a cilium.

You can think of the collar as a turnstile at the foot of a long bridge connecting a remote island to the mainland. If the turnstile is damaged, traffic stops, and there is no way to drive goods and passengers out to the island.

Similarly, mutations in Tectonic1 prevent the collar from forming correctly, and this causes defects in the cilia within the brain and ultimately leads to Joubert syndrome, Reiter and his colleagues determined. In cells, they showed that restoring a non-mutated form of the protein restores the function of the cilia.

Explore further: New gene that causes intellectual disability discovered

More information: "A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition" Nature Genetics. dx.doi.org/10.1038/ng.891

Related Stories

New gene that causes intellectual disability discovered

May 12, 2011
A new study involving Canada's Centre for Addiction and Mental Health (CAMH) has found a gene connected with a type of intellectual disability called Joubert syndrome.

Recommended for you

Discovery of the 'pioneer' that opens the genome

January 23, 2018
Our genome contains all the information necessary to form a complete human being. This information, encoded in the genome's DNA, stretches over one to two metres long but still manages to squeeze into a cell about 100 times ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.