Lawson researchers take control of cancer

July 28, 2011, Lawson Health Research Institute

According to the Canadian Cancer Society, one in four Canadians will die of cancer. This year alone, the disease will kill an estimated 75,000 people. With incidence rates on the rise, more cancer patients are facing grave prognoses. Fortunately, Lawson Health Research Institute's Dr. John Lewis, Dr. Ann Chambers, and colleagues have found new hope for survival. Their new study released today in Laboratory Investigation shows that maspin, a cellular protein, can reduce the growth and spread of cancer cells - but only when it is in the nucleus.

Maspin is believed to inhibit the formation, development, and spread of tumors in several aggressive cancers, including breast, ovarian, and head and neck cancers. Yet efforts to use this information to predict how will fare have been challenging; the presence of maspin has been linked to both good and bad prognoses. Dr. Lewis, Dr. Chambers, and their team believed that this inconsistency was caused by the location of maspin in the cell, whether in the nucleus or in the , and sought to test this theory.

To assess the effects of maspin on and development, they tested two aggressive cancers: a highly invasive , and a known to spread to the lymph nodes and the lungs. The team introduced two forms of maspin into the , one that went into the nucleus and one that was blocked from the nucleus. Then they injected the cells into both chicken embryo and mouse models of cancer and asked the simple question: which one slowed the cancer down?

It turned out the answer was simple: when maspin was allowed to get into the nucleus of the cancer cells, the disease's ability to spread was significantly limited. In fact, the incidence of metastasis was lowered from 75% to 40%. When maspin was not established in the nucleus; however, this ability was reversed and cancer cells were far more likely to spread. These findings demonstrate that the location of maspin within the cell significantly influences cancer cells' behavior, determining how aggressive the disease will be and how positive patient outcomes will be.

"The difference is night and day," Dr. Lewis says. "Metastasis is the cause of 90% of cancer deaths. We can now clearly see that maspin is working in the nucleus to dramatically reduce both the extent and the size of distant metastases."

"This study resolves a mystery in which maspin was sometimes linked with poor patient prognosis and sometimes with good patient prognosis," Dr. Chambers explains. "Our new work suggests that when maspin is located in the nucleus it blocks cancer growth and spread. This study may help doctors to understand how aggressive a patient's cancer will be, and may also lead to new targets for drug development."

Related Stories

Recommended for you

Single blood test screens for eight cancer types

January 18, 2018
Johns Hopkins Kimmel Cancer Center researchers developed a single blood test that screens for eight common cancer types and helps identify the location of the cancer.

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers find a way to 'starve' cancer

January 18, 2018
Researchers at Vanderbilt University Medical Center (VUMC) have demonstrated for the first time that it is possible to starve a tumor and stop its growth with a newly discovered small compound that blocks uptake of the vital ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.