'Megapixel' DNA replication technology promises faster, more precise diagnostics

July 3, 2011, University of British Columbia

UBC researchers have developed a DNA measurement platform that sets dramatic new performance standards in the sensitivity and accuracy of sample screening.

The advance could improve a range of genetic diagnostics and screenings where precise measurement is crucial--including the early detection of cancer, prenatal diagnostics, the detection of in , and the analysis of single cell .

The new digital (PCR) device uses liquid , rather than systems of microscopic valves, to partition into arrays of 1,000,000 chambers or more. The device enables the direct counting of single molecules isolated in individual chambers.

The density of reaction chambers achieved by the platform exceeds more traditional valve-based digital PCR techniques by a factor of 100, translating directly into improved performance.

"This solves some major technical issues that have limited the scale and accuracy of traditional digital PCR techniques," says Assistant Professor Carl Hansen with the UBC Department of Physics and Astronomy and Centre for High‐Throughput Biology. "It creates defect-free arrays of millions of uniform volume sub-reactions, and controls dehydration of these reactions during thermocycling."

PCR is an indispensable molecular biology technique used by researchers to amplify--or copy--a single piece of DNA millions or billions of times. The technique relies on repeated cycles of heating and cooling of the reaction to replicate segments of DNA using a protein called DNA polymerase, the same enzyme that copies DNA in living cells. PCR is used in medical and biology labs to clone DNA, analyze genes, detect hereditary disease, and in forensics.

The description of the 'megapixel' platform was published today in Nature Methods.

Digital PCR refers to a new generation of techniques that offer increased sensitively and density over the original technique, developed in 1983. The greatest number of chambers available in commercially available implementations of digital PCR, using integrated micro-valves, is 36,960. However, further scalability is limited by the maximum density at which valves may be reliably fabricated.

Hansen believes the new version or digital PCR can be scaled to hold up to approximately 10,000,000 chambers on a standard one inch format.

The UBC researchers also found the new 'megapixel' technique set new benchmarks in detecting rare mutations--defined as the lowest measurable ratio of two target sequences differing by a single nucleotide variation as well as new limits in the detection of subtle differences in sequence abundance.

Partitioning of a one million chamber array takes approximately one minute.

"Our solution, or something using the same techniques, could enable a new degree of precision in measurements in biomedical research and diagnostics. The dramatic increase in assay density has important implications for the adoption of digital PCR as an economical, fast and routine analytical tool," says Hansen.

More information: Paper online: dx.doi.org/10.1038/nmeth.1640

Related Stories

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.