Treating obesity via brain glucose sensing

July 26, 2011

The past two decades have witnessed an epidemic spread of obesity-related diseases in Western countries. Elucidating the biological mechanism that links overnutrition to obesity could prove crucial in reducing obesity levels. In the July 26 issue of PLoS Biology, Dr. Dongsheng Cai and his research team at Albert Einstein College of Medicine describe a pathway that directs the brain to sense the body's glucose dynamics, and they find that a defect of this glucose sensing process contributes to the development of obesity and related disease. Importantly, the team also found that correction of this defect can normalize the whole-body energy balance and treat obesity.

The hypothalamus in the brain plays a key role in controlling energy and body weight balance. To maintain balance between and energy expenditure, the hypothalamus constantly gauges the whole-body's energy levels by sampling circulating hormones (e.g. insulin and leptin) as well as nutrients (e.g., glucose). Although we know quite a bit about the hormonal pathways in the hypothalamic regulation of feeding, the mechanisms for hypothalamic nutrient sensing are much less clear. Moreover, a causal link between a nutrient sensing defect and obesity remains to be established. The team led by Dr. Cai discovered a novel role of a protein complex, hypoxia-inducible factor (HIF), in hypothalamic glucose sensing and whole-body in mice.

HIF is a nuclear transcription factor which induces hypoxia response. When tissue is low, HIF is activated to promote cellular metabolic adaption and survival. Recent research has appreciated the involvement of HIF in the metabolism of . "However, an intriguing but unexplored question is whether HIF can be important for the regulation of whole-organism metabolism, and if so, which tissue and cells are responsible." says Cai, who is an expert in and metabolism.

Cai and his group examined HIF in the hypothalamus and, surprisingly, found that it can be activated by glucose and that this regulation was associated with appetite control in mice. In identifying the cellular and molecular basis, the team found that in response to glucose, HIF acts in a unique group of hypothalamic nutrient-sensing neurons to induce expression of POMC gene - a gene which has been known to play a key part in hypothalamic control of feeding and body weight. Most excitingly, the team demonstrated the therapeutic potential of targeting hypothalamic HIF to control obesity. By enhancing the hypothalamic HIF activity via gene delivery, mice become resistant to obesity despite the condition of nutritional excess.

"It was an exciting discovery," explains Cai, "Our study is the first to show that beyond its classical oxygen-sensing function in many cells, HIF in the hypothalamic neurons can sense glucose to control the whole-body balance of energy intake and expenditure which is critical for body weight homeostasis." Overall, this study reveals a crucial role for neuronal HIF in bridging the brain's glucose sensing with the brain's regulation of body weight and metabolic physiology. These findings also highlight a potential implication for developing neuronal HIF activators in treating and preventing obesity and related diseases.

Explore further: Researchers find link between brain molecule and obesity and diabetes

More information: Zhang H, Zhang G, Gonzalez FJ, Park S-m, Cai D (2011) Hypoxia-Inducible Factor Directs POMC Gene to Mediate Hypothalamic Glucose Sensing and Energy Balance Regulation. PLoS Biol 9(7): e1001112. doi:10.1371/journal.pbio.1001112

Related Stories

Researchers find link between brain molecule and obesity and diabetes

April 19, 2011
The brain's hypothalamus plays a key role in obesity and one of its major complications – type 2 diabetes. Nerve cells in the hypothalamus detect nutrients and hormones circulating in the blood and then coordinate a ...

Understanding cancer energetics

June 4, 2011
(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

Recommended for you

Study finds walnuts may promote health by changing gut bacteria

July 28, 2017
Research led by Lauri Byerley, PhD, RD, Research Associate Professor of Physiology at LSU Health New Orleans School of Medicine, has found that walnuts in the diet change the makeup of bacteria in the gut, which suggests ...

Green tea ingredient may ameliorate memory impairment, brain insulin resistance, and obesity

July 28, 2017
A study published online in The FASEB Journal, involving mice, suggests that EGCG (epigallocatechin-3-gallate), the most abundant catechin and biologically active component in green tea, could alleviate high-fat and high-fructose ...

Manipulating a type of brain cell gets weight loss results in mice

July 28, 2017
A new study has found something remarkable: the activation of a particular type of immune cell in the brain can, on its own, lead to obesity in mice. This striking result provides the strongest demonstration yet that brain ...

Team finds link between backup immune defense, mutation seen in Crohn's disease

July 27, 2017
Genes that regulate a cellular recycling system called autophagy are commonly mutated in Crohn's disease patients, though the link between biological housekeeping and inflammatory bowel disease remained a mystery. Now, researchers ...

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.