Gene found to play role in early cancer

August 24, 2011 By Krishna Ramanujan, Cornell University

(Medical Xpress) -- Mutations to a gene called p53 have been linked to half of all cancers, leading to tumor growth and the spread of cancerous cells. Now, a Cornell-led study identifies for the first time the mechanisms by which p53 controls cell movement and invasion into other areas of the body.

Using cultures of ovarian surface epithelium cells, where ovarian cancer originates, the researchers found that when they inactivated the , the cells began to move and invade the underlying gelatinous protein mixture used in the lab that resembles an extracellular tissue environment.

"People thought that and invasion were part of later stages of cancer, but we show that this characteristic can be found in cells at the very beginning of ," said Chang-Il Hwang, lead author of the paper recently published in the Proceedings of the National Academy of Sciences and a graduate student in the lab of Cornell biomedical sciences professor and senior author Alexander Nikitin.

Under normal circumstances, p53 regulates the expression of a receptor protein called MET. But when p53 mutates, MET overexpresses, leading to cell movement and invasive growth. The researchers found two distinct pathways by which p53 regulates and suppresses MET.

"One of the next steps is to study ways to inhibit MET," said Hwang. "Our findings support the idea that suppression of MET could be a particularly reasonable and effective approach to controlling cancer carrying . We hope our findings can be generalized into other types of cancer as well."

In tests, the researchers found the p53 and MET network were consistent in both lung and colon cancer.

Mutations of p53 take many forms, with the most common mutation affecting one of the pathways that regulates MET but not the other pathway. By understanding how different p53 mutations affect each of the two pathways, researchers may one day develop individualized cancer therapies by suppressing MET, said Hwang.

"Different p53 mutations may affect the cancer from different angles," he added.

The study was funded by the National Institutes of Health, the Marsha Rivkin Center for Ovarian Cancer, Cornell's College of Veterinary Medicine and the Ovarian Cancer Research Fund.

Related Stories

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Scientists block the siren call of two aggressive cancers

January 23, 2018
Aggressive cancers like glioblastoma and metastatic breast cancer have in common a siren call that beckons the bone marrow to send along whatever the tumors need to survive and thrive.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.