New idea could disable bug that causes ulcers, cancer

August 8, 2011 By Susan L. Young
New idea could disable bug that causes ulcers, cancer
Scientists have found a way to disrupt Helicobacter pylori’s ability to use its whip-like flagella to move around the stomach. The bacteria causes ulcers and gastric cancer. Credit: Michael Howitt and Lydia-Marie Joubert

If you were the size of a bacterium, the lining of a stomach would seem like a rugged, hilly landscape filled with acid-spewing geysers, said Manuel Amieva, MD, PhD, assistant professor of pediatrics and of microbiology and immunology. Stomach-dwelling bacteria called Helicobacter pylori, the cause of ulcers and some gastric cancers, must navigate through the treacherous terrain to find sanctuary in the mucous layer that coats the inside of the stomach.

But now Amieva and his colleagues have identified a protein that regulates H. pylori’s ability to seek shelter. The protein could be a target for therapies that specifically combat H. pylori while leaving our friendly gut bacteria alone. The findings were published on July 26 in the journal mBio.

H. pylori makes a living in about half the people on Earth. For most, the tiny tenants go unnoticed. But in about 15 percent of those infected, the microbes cause . Yet worse, for others, it increases the risk of gastric cancer.

Despite the fact that it lives in our stomachs, H. pylori is a not fan of our caustic digestive acids. To avoid getting burned, the bacteria use their propeller-like appendages called flagella to power their corkscrew bodies through the mucous that protects our cells. While it was known that the bacteria colonize the stomach’s surface mucus, the researchers found that they also take up residence deep in some of the glands that tunnel down from the stomach’s surface.

The team made the discovery while studying a protein called ChePep. Michael Howitt, PhD, a former graduate student in Amieva’s lab, created a special strain of H. pylori that cannot make the protein. Bacteria lacking ChePep don’t make their way down into the glands, prompting Howitt to examine how the bugs move.

Although the mutant bacteria could still swim, they behaved erratically. “They weren’t taking the nice arcing trajectories that you see with normal H. pylori, they were moving herky jerky, taking short swims, then stopping, then turning and swimming off again,” said Howitt, who is lead author of the study. The bugs were doing a lot more backward swimming than typical H. pylori, as if they were always trying to escape toxic conditions.

Even simple organisms like bacteria can sense and respond to their environment. Microbes use their so-called chemotaxis machinery to move based on the chemical composition of their surroundings, swimming toward good conditions and away from bad. “Bacteria don’t swim aimlessly and their ability to sense the environment is critical to survival,” said Howitt. The zone of safety for H. pylori is constantly changing as the mucous layer gets sloughed off.

The microbes can change their direction by changing the spin of their flagella, the whip-like structures on one end of the microbes. “If the isn’t sensing anything bad, it’ll rotate the flagella in one direction and swim straight,” said Amieva, senior author of the study. “But if something bad is seen, it’ll activate a clutch, stall the flagella and switch directions.” Through genetic and microscopic analysis, the scientists concluded that ChePep helps to regulate the bacteria’s “clutch,” and thus is involved in changing the direction that the flagellum twirls.

“When other chemotaxis proteins are mutated, H. pylori just swims straight, like hands off the wheel, but ChePep mutants do the opposite, they look like they are constantly slamming the brake and turning,” said Howitt.

The researchers were surprised to find an unknown part to the chemotaxis machinery. “The chemotaxis system is the best-studied biochemical signaling system ever, so finding a new player was totally unexpected,” said Amieva. Much of what scientists know about the chemotaxis machinery of bacteria is based on just two bacteria species that aren’t that closely related to H. pylori. Nonetheless, much of the chemotaxis machinery is shared amongst most bacterial families. ChePep, however, is unique.

H. pylori belongs to a class of bacteria that thrive in extreme environments, like deep-sea hydrothermal vents, sulfurous caves and the guts of birds and mammals. “The epsilon proteobacteria do a good job at making a living in some inhospitable places,” said Howitt. The researchers found ChePep proteins in other epsilon proteobacteria and the other ChePep’s were so similar to H. pylori’s that Howitt could switch a copy from a deep-sea species into the stomach bugs with no observable difference.

However, the team did not find ChePep outside the epsilon proteobacteria, suggesting that disrupting the could be a way to specifically target H. pylori. “When you block chemotaxis, H. pylori is more sensitive to antibiotics,” said Howitt. “If you blocked ChePep, the beneficial in our guts would still have their chemotaxis machinery intact."

Related Stories

Recommended for you

Anti-cancer chemotherapeutic agent inhibits glioblastoma growth and radiation resistance

July 24, 2017
Glioblastoma is a primary brain tumor with dismal survival rates, even after treatment with surgery, chemotherapy and radiation. A small subpopulation of tumor cells—glioma stem cells—is responsible for glioblastoma's ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Aug 08, 2011
"our caustic digestive acids" ??
Who writes this?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.