New piece to the puzzle of brain function

August 19, 2011

Researchers at the Faculty of Pharmaceutical Sciences at the University of Copenhagen have collaborated with the company NeuroSearch to generate new knowledge about an important part of the brain's complex communication system. The discovery could form the basis for future development of better medicines for patients with psychiatric disorders. The results were recently published Journal of Neuroscience.

New piece to the puzzle of brain functionNew knowledge challenges established scientific ideas about the function of the nicotinic acetylcholine receptors, which play an important role in the health of the brain. As its name suggests, the class of receptors is significant for the effects of and is linked to – however, life-threatening conditions such as Alzheimer's and Parkinson's disease are also linked to the electrical impulses that are mediated by nicotinic acetylcholine receptors.

"Brain function is a gigantic puzzle, and one could say that we have found and documented a new and important piece. Within the family of nicotinic acetylcholine receptors exist various subtypes. We show – in short – that on the most common subtype there are no less than three binding sites instead of the two which science has hitherto known," says Associate Professor Thomas Balle, an associate professor at the Department of Medicinal Chemistry, University of Copenhagen. Balle has, in collaboration with Postdoctoral Fellow Kasper Harpsøe and researchers at the company NeuroSearch, discovered the previously unexplored corner of the otherwise well-known receptor.

"The results are first and foremost interesting from a basic scientific point of view. We change the entire conceptual understanding of the receptor, so to speak, and it appears to be a general mechanism that applies across the receptor family. We are expanding the foundation of knowledge in this area, as it were," Balle says.

"At the same time the new binding site is interesting from an application perspective – when the brain is activated via the new binding site, a stronger impulse is simply sent through the receptor's 'lock', and this leads to entirely new and exciting opportunities in future drug development."

The nicotinic acetylcholine receptors are structurally similar to the GABAA receptors, which also play an important role in pharmaceutical chemical research.

Benzodiazepines for insomnia and anxiety attacks constitute a class of well established drugs that act by modulating the GABAA system. The scientists believe that they have discovered the nicotine equivalent of a benzodiazepine binding site.

"It is likely that the discovery will form the basis for the development of better medicines for in the future – because the combination of a mechanistic and a structural understanding of the receptor is a very good starting point for structure-based design of drugs that act via the new binding site," Harpsøe says.

The new research results were achieved in close collaboration with NeuroSearch – a European-based biopharmaceutical company specializing in diseases of the central nervous system (CNS).

"All the experimental work is conducted at NeuroSearch with manager Philip Ahring acting as the head person. The laboratory work is inspired by structural models developed in our research group at the Faculty of Pharmaceutical Sciences. In order to fully understand the new binding site, we have performed numerous mutation studies and electrophysiological measurements, and in every way it has been a great working relationship with full openness and the opportunity for exchange of ideas - very rewarding for both parties," Balle says.

Explore further: Eliminating protein in specific brain cells blocks nicotine reward

Related Stories

Eliminating protein in specific brain cells blocks nicotine reward

July 26, 2011
Removing a protein from cells located in the brain's reward center blocks the anxiety-reducing and rewarding effects of nicotine, according to a new animal study in the July 27 issue of The Journal of Neuroscience. The findings ...

Recommended for you

Laser used to reawaken lost memories in mice with Alzheimer's disease

July 26, 2017
(Medical Xpress)—A team of researchers at Columbia University has found that applying a laser to the part of a mouse brain used for memory storage caused the mice to recall memories lost due to a mouse version of Alzheimer's ...

Cellular roots of anxiety identified

July 26, 2017
From students stressing over exams to workers facing possible layoffs, worrying about the future is a normal and universal experience. But when people's anticipation of bad things to come starts interfering with daily life, ...

Cognitive cross-training enhances learning, study finds

July 25, 2017
Just as athletes cross-train to improve physical skills, those wanting to enhance cognitive skills can benefit from multiple ways of exercising the brain, according to a comprehensive new study from University of Illinois ...

Brain disease seen in most football players in large report

July 25, 2017
Research on 202 former football players found evidence of a brain disease linked to repeated head blows in nearly all of them, from athletes in the National Football League, college and even high school.

Lutein may counter cognitive aging, study finds

July 25, 2017
Spinach and kale are favorites of those looking to stay physically fit, but they also could keep consumers cognitively fit, according to a new study from University of Illinois researchers.

Zebrafish study reveals clues to healing spinal cord injuries

July 25, 2017
Fresh insights into how zebrafish repair their nerve connections could hold clues to new therapies for people with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.