Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

August 12, 2011

Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, a journal of the American Neurological Association and the Child Neurology Society, show the gene variant affects Sigma-1 receptors which are involved in motor neuron function and disease development.

ALS, also referred to as Lou Gehrig's disease, is a progressive that attacks brain and spinal cord (neurons) responsible for controlling voluntary muscle movement. The degeneration of upper and lower motor neurons gradually weakens the muscles they control, leading to paralysis and eventual death from .

Studies report an annual incidence of 1-3 per 100,000 individuals, with 90% of cases not having a family history of the disease (sporadic ALS). In the remaining 10% of cases there is more than one affected family member (familial ALS). Juvenile ALS—characterized by age of onset below 25 years—is a rare and sporadic disorder, making it difficult to determine incidence rates. One of the more prominent juvenile ALS patients is renowned physicist, Professor Stephen Hawking, who was diagnosed at the age of 21.

Previous research found that mutation of the superoxide dismutase 1 (SOD1) gene accounts for 20% of familial and 5% of sporadic ALS cases; gene mutations of ALS2 and SETX have been reported in juvenile ALS cases. The present study led by Dr. Amr Al-Saif from the King Faisal Specialist Hospital and Research Center in Riyadh, KSA performed genetic testing on four patients from an ALS family who were diagnosed with juvenile ALS to investigate mutations suspected in disease development.

Researchers performed gene mapping on the DNA of study participants and used direct sequencing to detect the genetic variant. The team identified a shared homozygosity region in affected individuals and gene sequencing of SIGMAR1 revealed a mutation affecting the encoded protein, Sigma-1 receptor. Those cells with the mutant protein were less resistant to programmed cell death (apoptosis) induced by stress to the endoplasmic reticulum.

"Prior evidence has established that Sigma-1 receptors have neuroprotective properties and animal models with this gene inactivated have displayed motor deficiency," explains Dr. Al-Saif. "Our findings emphasize the important role of Sigma-1 receptors in motor neuron function and disease. Further exploration is warranted to uncover potential therapeutic targets for ALS. "

More information: "A Mutation in Sigma-1 Receptor Causes Juvenile Amyotrophic Lateral Sclerosis"; Amr Al-Saif, Futwan Al-Mohanna and Saeed Bohlega. Annals of Neurology; Published Online: August 12, 2011. DOI:10.1002/ana.22534

Related Stories

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.