Scientists identify mutation in SIGMAR1 gene linked to juvenile ALS

August 12, 2011, Wiley

Researchers from the Kingdom of Saudi Arabia have identified a mutation on the SIGMAR1 gene associated with the development of juvenile amyotrophic lateral sclerosis (ALS). Study findings published today in Annals of Neurology, a journal of the American Neurological Association and the Child Neurology Society, show the gene variant affects Sigma-1 receptors which are involved in motor neuron function and disease development.

ALS, also referred to as Lou Gehrig's disease, is a progressive that attacks brain and spinal cord (neurons) responsible for controlling voluntary muscle movement. The degeneration of upper and lower motor neurons gradually weakens the muscles they control, leading to paralysis and eventual death from .

Studies report an annual incidence of 1-3 per 100,000 individuals, with 90% of cases not having a family history of the disease (sporadic ALS). In the remaining 10% of cases there is more than one affected family member (familial ALS). Juvenile ALS—characterized by age of onset below 25 years—is a rare and sporadic disorder, making it difficult to determine incidence rates. One of the more prominent juvenile ALS patients is renowned physicist, Professor Stephen Hawking, who was diagnosed at the age of 21.

Previous research found that mutation of the superoxide dismutase 1 (SOD1) gene accounts for 20% of familial and 5% of sporadic ALS cases; gene mutations of ALS2 and SETX have been reported in juvenile ALS cases. The present study led by Dr. Amr Al-Saif from the King Faisal Specialist Hospital and Research Center in Riyadh, KSA performed genetic testing on four patients from an ALS family who were diagnosed with juvenile ALS to investigate mutations suspected in disease development.

Researchers performed gene mapping on the DNA of study participants and used direct sequencing to detect the genetic variant. The team identified a shared homozygosity region in affected individuals and gene sequencing of SIGMAR1 revealed a mutation affecting the encoded protein, Sigma-1 receptor. Those cells with the mutant protein were less resistant to programmed cell death (apoptosis) induced by stress to the endoplasmic reticulum.

"Prior evidence has established that Sigma-1 receptors have neuroprotective properties and animal models with this gene inactivated have displayed motor deficiency," explains Dr. Al-Saif. "Our findings emphasize the important role of Sigma-1 receptors in motor neuron function and disease. Further exploration is warranted to uncover potential therapeutic targets for ALS. "

More information: "A Mutation in Sigma-1 Receptor Causes Juvenile Amyotrophic Lateral Sclerosis"; Amr Al-Saif, Futwan Al-Mohanna and Saeed Bohlega. Annals of Neurology; Published Online: August 12, 2011. DOI:10.1002/ana.22534

Related Stories

Recommended for you

New study finds 'timing cells' in the brain may underlie an animal's inner clock

October 23, 2018
Are you taking your time when feeding your pet? Fluffy and Fido are on to you—and they can tell when you are dawdling.

Neurons reliably respond to straight lines

October 23, 2018
Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, ...

Scientists reveal new details of how a naturally occurring hormone can boost memory in aging mice

October 23, 2018
A Columbia study in mice has revealed new details of how a naturally occurring bone hormone reverses memory loss in the aging brain. These findings about the hormone, called osteocalcin, stand to spur further investigations ...

Mutation in common protein triggers tangles, chaos inside brain cells

October 23, 2018
A pioneer in the study of neural cells revealed today (Oct. 23, 2018) how a single mutation affecting the most common protein in a supporting brain cell produces devastating, fibrous globs. These, in turn, disturb the location ...

Nerve-on-a-chip platform makes neuroprosthetics more effective

October 23, 2018
EPFL scientists have developed a miniaturized electronic platform for the stimulation and recording of peripheral nerve fibers on a chip. By modulating and rapidly recording nerve activity with a high signal-to-noise ratio, ...

The smell of lavender is relaxing, science confirms

October 23, 2018
Lavender works its relaxing magic all around us: from garden borders to bath bombs to fabric softener. But why not in our hospitals and clinics? And what is the science behind the magic?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.