Team genetically sequences most common bladder cancer

August 11, 2011

In an article published online this week in Nature Genetics, a University of Colorado Cancer Center team in partnership with universities in China and Denmark reports the first genetic sequencing of urothelial (transitional) carcinoma, the most prevalent type of bladder cancer.

Recognizing the that make bladder different than their healthy neighbors may allow early genetic screenings for cancer and new therapies targeting with these mutations. In addition, the mutations the team found are similar to those recently discovered in a host of other cancers, implying a possible common denominator in the cause of cancer in general. Specifically, in 59 percent of 97 patients with urothelial , the team found mutations in responsible for – the process of packaging DNA for easy duplication during cell division.

"The discovery of mutation in the UTX gene and seven similar chromatin remodeling genes is a major step toward genetic testing and treatment of bladder cancer," says Dan Theodorescu, MD, PhD, director the University of Colorado Cancer Center and an author on this work. On a grand scale, the study also provides the first-ever overview of the genetic basis of urothelial bladder cancer and implicates chromatin remodeling in its cause.

Chromatin describes the genetic contents of a cell's nucleus including the cell's DNA and the proteins that sculpt its arrangement inside the cell. During most of a cell's life, these proteins arrange DNA loosely so that its inner parts are accessible and available for use. In preparation for cell division, these proteins in the cell's chromatin constrict DNA into a tight package for efficient duplication. This squeezing is known as "chromatin remodeling." How the cell remodels and thus how it duplicates depends greatly on associated chromatin remodeling genes -- the genes this study found to be mutated in many bladder cancer patients.

"When we talk about 'causes' of cancer, there's a black box between a healthy cell and the emergence of cancerous ones," says Theodorescu. "By exploring the genetic changes that take place inside this box, we can look at the links of the chain of events that lead to cancer and hopefully target specific links for therapy."

In the development of bladder cancer, this study shows that chromatin remodeling is an important link.

"We are currently well underway in performing similar sequencing with Caucasian subjects to determine if the mutations in the Caucasian population are similar to those seen in this study's Asian subjects," Theodorescu says.

After confirmation, the task will be twofold: designing genetic tests for these mutations that may allow easy, early, accurate diagnosis of , and developing therapies that recognize these mutations and kill the cancerous cells that hold them.

Explore further: Research discovers frequent mutations of chromatin remodeling genes in TCC of the bladder

Related Stories

Research discovers frequent mutations of chromatin remodeling genes in TCC of the bladder

August 7, 2011
BGI, the world's largest genomics organization, Peking University Shenzhen Hospital and Shenzhen Second People's Hospital, announced today that the study on frequent mutations of chromatin remodeling genes in transitional ...

Recommended for you

Understanding cell segregation mechanisms that help prevent cancer spread

July 26, 2017
Scientists have uncovered how cells are kept in the right place as the body develops, which may shed light on what causes invasive cancer cells to migrate.

Study may explain failure of retinoic acid trials against breast cancer

July 25, 2017
Estrogen-positive breast cancers are often treated with anti-estrogen therapies. But about half of these cancers contain a subpopulation of cells marked by the protein cytokeratin 5 (CK5), which resists treatment—and breast ...

Physical activity could combat fatigue, cognitive decline in cancer survivors

July 25, 2017
A new study indicates that cancer patients and survivors have a ready weapon against fatigue and "chemo brain": a brisk walk.

Breaking the genetic resistance of lung cancer and melanoma

July 25, 2017
Researchers from Monash University and the Memorial Sloan Kettering Cancer Center (MSKCC, New York) have discovered why some cancers – particularly lung cancer and melanoma – are able to quickly develop deadly resistance ...

New therapeutic approach for difficult-to-treat subtype of ovarian cancer identified

July 24, 2017
A potential new therapeutic strategy for a difficult-to-treat form of ovarian cancer has been discovered by Wistar scientists. The findings were published online in Nature Cell Biology.

Immune cells the missing ingredient in new bladder cancer treatment

July 24, 2017
New research offers a possible explanation for why a new type of cancer treatment hasn't been working as expected against bladder cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.