Researchers identify possible therapeutic target for depression, addiction

August 10, 2011

Researchers studying mice are getting closer to understanding how stress affects mood and motivation for drugs.

According to the researchers, blocking the cascade in may help reduce the , which can include , depression and the pursuit of .

A research team from St. Louis and Seattle reports in the Aug. 11 issue of the journal Neuron that in exposed to stress, a called p38α mitogen-activated protein kinase (MAPK) influences the animal's behavior, contributing to depression-like symptoms and risk for addiction.

The video will load shortly
Stressed animals withdraw and don't interact as often with others. Those who previously have had drugs like cocaine also may seek more drugs in response to stress. But now investigators at Washington University in St. Louis and the University of Washington in Seattle report that they've identified a key molecular pathway through which stress can contribute to depression, drug-seeking behavior and other problems. Jim Dryden reports. Credit: Washington University BioMed Radio

The first author is Michael R. Bruchas, PhD, assistant professor of anesthesiology and of anatomy and neurobiology at Washington University School of Medicine in St. Louis, and the senior investigator is Charles Chavkin, PhD, professor of pharmacology at the University of Washington in Seattle.

The researchers demonstrate that p38α MAPK protein is activated by kappa-opioid receptors on neurons to regulate serotonin, a key neurotransmitter that helps regulate mood. When exposed to stress, the brain releases hormones that specifically interact with kappa-opioid receptors on . Those receptors, in turn, activate p38α MAPK, which then interacts with the serotonin transporter in the cells to reduce the amount of available serotonin.

In this study, funded by the National Institute on Drug Abuse, the researchers looked at a brain region, called the dorsal raphe nucleus, where many stress-related factors and serotonin converge. They found that after stress exposure, mouse brains activate p38α MAPK, lowering serotonin levels and triggering depression-like behaviors as well as drug-seeking behavior in the mice.

Stressed animals withdrew and did not interact with other mice. In animals that had been given cocaine injections while in specific places in their cages, stress made them more likely to physically seek out those locations where they had received the drug.

"We call these responses 'depression-like' and 'addiction-like' behaviors because, we can't ask mice if they're addicted or sad," Bruchas says. "But just as depressed people often withdraw from social interactions, stressed mice do the same thing. We also observed that stressed mice return more often to the place where they received cocaine."

Next, investigators used a relatively novel genetic technology to disable the p38α MAPK protein only in cells of the brain's serotonin system. Without the p38α protein, the stress-exposed mice no longer withdrew from social interactions, displayed depression-like behavior or sought drugs.

While working in Chavkin's laboratory at the University of Washington, Bruchas and his colleagues studied mice exposed to what they call social defeat stress.

"We put a mouse into an enclosure with an 'aggressor' mouse," Bruchas says. "Some mice, like some humans, are more dominant and aggressive. When a non-aggressive mouse is put into a cage with an aggressive animal, that aggression causes stress similar to what we might see in an adult human working for a difficult boss or a teenager who has to deal with a bully at school."

Just as interacting with a "bully" mouse is similar to dealing with stressful environments, Bruchas and Chavkin say the cascade of events in the brain that contributes to serotonin reduction appears to be similar in both mice and humans.

"When people take antidepressant drugs called selective serotonin reuptake inhibitors, or SSRIs, to relieve , the drugs act on a cellular pump called the serotonin transporter, and this results in more serotonin in the brain," Bruchas says. "We think that the involvement of the p38α protein and kappa-opioid receptors represents an important finding in figuring out how it is that cells regulate depressive and addictive behaviors."

In his new laboratory at Washington University, Bruchas says he plans to test whether the same p38α MAPK protein is involved when the drug is nicotine or amphetamine.

"It will be important to determine whether this pathway is conserved for drugs of abuse other than cocaine," he says. "If so it will further highlight the importance of working with chemists to target this pathway for potential therapies."

Bruchas also plans to look at other brain areas to learn whether similar responses are occurring in response to stress.

Meanwhile, in Seattle, Chavkin's group continues to examine stress effects on addiction, long-term addiction models and whether humans regulate stress through the same kappa-opioid/p38α pathway.

"Our data demonstrate that p38α is required for local regulatory control of transport, which ultimately controls behavioral responses, including social avoidance and relapse of drug-seeking," Chavkin says. "These results are important because they highlight novel therapeutic targets to promote stress resilience."

More information: Bruchas MR, Schindler AG, Shankar H, Messinger DI, Miyatake M, Land BB, Lemos JC, Hagan C, Neumaier JF, Quintana A, Palmiter RD, Chavkin C. Selective p38α MAPK deletion in seretonergic neurons produces produces stress-resilience in models of depression and addiction. Neuron, vol. 71 (3), Aug. 11, 2011. doi:10.1016/j.neuron.2011.06.011

Related Stories

Recommended for you

Concern with potential rise in super-potent cannabis concentrates

July 21, 2017
University of Queensland researchers are concerned the recent legalisation of medicinal cannabis in Australia may give rise to super-potent cannabis concentrates with associated harmful effects.

Findings link aldosterone with alcohol use disorder

July 18, 2017
A new study led by scientists at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, demonstrates that aldosterone, a hormone produced in the adrenal glands, may contribute ...

Depression among young teens linked to cannabis use at 18

July 17, 2017
A study looking at the cumulative effects of depression in youth, found that young people with chronic or severe forms of depression were at elevated risk for developing a problem with cannabis in later adolescence.

Why does prenatal alcohol exposure increase the likelihood of addiction?

July 7, 2017
One of the many negative consequences when fetuses are exposed to alcohol in the womb is an increased risk for drug addiction later in life. Neuroscientists in the University at Buffalo Research Institute on Addictions are ...

Researchers say U.S. policies on drugs and addiction could use a dose of neuroscience

June 23, 2017
Tens of thousands of Americans die from drug overdoses every year – around 50,000 in 2015 – and the number has been steadily climbing for at least the last decade and a half, according to the National Institute on Drug ...

Study provides further support for genetic factors underlying addictions

June 13, 2017
Impairment of a particular gene raises increases susceptibility to opioid addiction liability as well as vulnerability to binge eating according to a new study.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.