Award-winning research points toward Alzheimer's vaccine

September 26, 2011
An accomplice to the protein that causes plaque buildup in Alzheimer’s disease is the focus of a potential new treatment, according to research by Georgia Health Sciences University graduate student, Scott Webster (pictured). Credit: Phil Jones, Georgia Health Sciences University photographer

An accomplice to the protein that causes plaque buildup in Alzheimer's disease is the focus of a potential new treatment, according to research by a Georgia Health Sciences University graduate student.

In Alzheimer's, the can accumulate in the brain instead of being eliminated by the body's natural defenses, between the neurons and forming impassable plaques.

Amyloid and the way it gets there could be targets for a new .

"RAGE, or receptor for advanced glycation endproducts, proteins bind to amyloid and transport it into the brain," said Scott Webster, a fifth-year graduate student who is studying the disease in the lab of Dr. Alvin Terry, Professor of Pharmacology and Toxicology. Research has shown that RAGE may also contribute to the inflammation and damage that amyloid causes to the brain's .

Webster is researching a vaccine that targets RAGE and amyloid by using the body's own immune system to protect against their over-production and eventual build-up. His work has earned him the 2011 Darrell W. Brann Scholarship in Neuroscience, a $1,000 award honoring an outstanding graduate student on campus working in neuroscience.

"Unfortunately, all of the vaccines for Alzheimer's that have been through clinical trials have failed," he said. "Part of the reason why could be that they're just not comprehensive enough. Most only amyloid. Our hope is that by taking a more encompassing approach, we will be more effective. So far, that's exactly what we're seeing in our experiments."

Other vaccines also have multiple side effects, including swelling of the brain. Webster hopes that targeting the RAGE protein and changing how the vaccine is administered will minimize inflammatory side effects.

Another benefit is that the vaccine can be administered orally, since it does not require an , which is added to vaccines to enhance the . The is one of the body's largest repositories of human flora, microorganisms that are key to the immune system.

"That's a relatively new idea," Webster said. "By using the immune system that's endogenous to our gut, we can skew the body's response away from the inflammatory and toward a more robust antibody response, bypassing some of the side effects."

Early results have shown improved cognition and memory in animal models of Alzheimer's, something Webster considers a sort of personal crusade.

"I have watched a close family friend suffer from the disease and saw how devastating it was," he said. "The family is caring for this person and yet the person doesn't even remember who his own family is. It's a heartbreaking process to watch."

Even with promising results, he cautioned of unknowns about the potential vaccine.

"We need to move on to larger animal studies. We have a lot we still don't know about the vaccine itself. For example, we know that amyloid and RAGE bind together, but we don't know why the binding creates such a stable complex. We have these end points, but we still don't know some of the basic science that needs to be known so that we can push ahead."

Related Stories

Recommended for you

New surgical strategy offers hope for repairing spinal injuries

July 28, 2017
Scientists in the UK and Sweden previously developed a new surgical technique to reconnect sensory neurons to the spinal cord after traumatic spinal injuries. Now, they have gained new insight into how the technique works ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists block evolution's molecular nerve pruning in rodents

July 27, 2017
Researchers investigating why some people suffer from motor disabilities report they may have dialed back evolution's clock a few ticks by blocking molecular pruning of sophisticated brain-to-limb nerve connections in maturing ...

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.