Brain bank yields new clues to brain development

September 29, 2011, Howard Hughes Medical Institute

(Medical Xpress) -- The creation of brain cells doesn’t end at birth, but it has been hard to pin down how long the brain continues to create new, specialized cells. Now a study led by Howard Hughes Medical Institute (HHMI) investigator David H. Rowitch and colleague Arturo Alvarez-Buylla concludes that in one region of the human brain, new cells are generated only until 18 months of age. The work relied on a new collection of specially prepared brain samples that Rowitch established with HHMI support. The new brain bank has also provided clues to why the brain can’t reverse the cellular damage that results from certain diseases.

Throughout development, new brain cells are made in an area of the brain called the subventricular zone (SVZ). The cells don’t stay there, however. They follow a torrent of moving cells, called the rostral migratory stream (RMS) that migrates toward the olfactory bulb, the part of the brain that processes smell. Studies of animal brains have suggested that cells continue to be produced in the SVZ of adults and move along the RMS throughout life.

“Most of what we know about the RMS comes from studies of non-human systems such as rats, mice, and birds,” says Rowitch. “There was relatively little known about the human RMS.”

Rowitch and his colleagues at the University of California, San Francisco, wanted to find out whether the results in animals also held true in humans. “We decided to look longitudinally at starting at the time of birth and continuing through adulthood,” says Rowitch.

But to visualize cells in the RMS, the researchers would need brains in good condition, from all ages, to which they could add fluorescent markers. Rowitch and his team hit a roadblock. Most human brains in existing collections are preserved in a chemical that prevents fluorescent markers from working. So they decided they’d have to create their own collection of brains, preserved with a different chemical. HHMI provided the funds to do so.

“HHMI provided the ability to create a new neuropathology center at UCSF, a new brain bank where we could start collecting samples,” says Rowitch. “Now we have better quality samples so to ask new questions.”

With 55 brains collected from deceased humans aged from birth through 84 years old, the researchers were able to see how the SVZ and RMS changed over the human lifespan. They found evidence that the generation of new cells in the SVZ stopped around 18 months of age. The RMS disappeared by seven years of age. They also found that some cells produced in the SVZ didn’t follow the RMS all the way to the olfactory bulb. Instead, they moved in a different stream of cells toward a separate area of the brain, something never seen in mice. The results are published in the September 29, 2011, issue of Nature.

“These results are different than what’s been seen in rodents and birds,” says Rowitch. “And it could explain some of the complexity of the human brain.”

Understanding the normal patterns of cell creation and movement in the developing human brain will allow Rowitch’s lab group to understand how this process might be affected in diseases such as cerebral palsy and other neurological injuries. The researchers plan to compare the RMS of normal brains to those of children with brain damage.

In addition to this study, Rowitch’s team is using the brain bank to learn about other aspects of healthy and damaged brains. In separate work published in the August 2011 issue of Nature Neuroscience, Rowitch used brains from the new bank to better understand the nature of white matter injury in the newborn brain and multiple sclerosis. The brain’s so-called white matter is made up of the long tentacles, or axons, of brain cells that make connections between different parts of the brain and stretch out to the rest of the body. Axons are coated in a white, protective material called myelin.

Rowitch discovered that when brain damage occurs, the Wnt pathway is activated, inhibiting the brain from making more myelin. This slows down the repair of injured axons in diseases including multiple sclerosis and cerebral palsy. After making this finding in the human brains from the brain bank, Rowitch tested whether a drug blocking Wnt could speed up brain repair in rodents. In mice with injuries to their white matter, blocking Wnt sped up the creation of new myelin by 30 percent, he found.

“This is a potential approach we could use to enhance myelin repair in the brain after injury,” says Rowitch.

Explore further: Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

Related Stories

Hope for infant brain injuries like cerebral palsy as well as multiple sclerosis

June 27, 2011
(Medical Xpress) -- In a new study published in Nature Neuroscience, a team of researchers revealed the discovery of a key protein necessary for nerve repair and could lead to the development of a treatment for brain injuries ...

Sniffing out Parkinson's

September 23, 2011
A team of neuroscientists in UConn's College of Liberal Arts and Sciences has mapped the brain’s nerve connections that help control the sense of smell, which could add another brain region to the list of those affected ...

Exercise the body, build the brain

September 8, 2011
Researchers have, for the first time, isolated exercise as the key factor in triggering the production of functional new cells in the learning and memory centre of the brain.

Researchers trace early journey of modulating cells in brain

July 28, 2011
Key cells in the brain region known as the hippocampus are formed in the base of the brain late in fetal life and undertake a long journey before reaching their final destination in the center of the brain shortly after birth, ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

4 / 5 (1) Sep 29, 2011
Their "Corridors of migrating neurons in the human brain and their decline during infancy" has only been made available online as an advanced publication not as a proper Nature article (which Nature confusingly call "letters").

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.