New genetic region responsible for testicle development found

September 26, 2011

New research presented today at the European Society for Paediatric Endocrinology meeting has found a genetic region, which may control testicle development in the foetus.

Men have XY , and the development of testes is thought to occur after upregulation of the testicular SOX9 gene pathway, in the presence of factor SRY on the . However, the mechanism by which this testicular SOX9 upregulation occurs has so far been unclear.

In this study, Dr Jacqueline Hewitt and colleagues from the Royal Children's Hospital Melbourne, Australia, used whole mircoarray, and subsequently fluorescence in-situ hybridisation and bioinformatic analyses, to examine the genomes of 30 children with disorders of sex development (DSD). Nine patients had 46,XX testicular DSD (meaning that although they had XX chromosomes, they had developed as males with ), while 21 patients had 46,XY gonadal dysgenesis (meaning that although they had XY chromosomes, they had developed as females, without testicles).

In two of the patients with 46,XX testicular DSD, the researchers found a small region, outside of the SOX9 gene, which was duplicated. Bioinformatic analysis of this duplicated region indicated that it contained an SRY/SOX binding motif, meaning the region may be a regulator of SOX9 and thus involved in testicle formation. The tandem arrangement (i.e. one after another) of the duplications implies they have either a dosage-related or structural effect on the SOX9 gene. The position of these duplications ties in with previous research in patients with a similar condition, familial 46,XX testicular DSD, which also showed that this chromosome region may be involved in testes development.

These findings address key issues in the complex gene regulation system that controls human sex development, in particular the mechanism by which the SOX9 gene is upregulated and testicles are formed in the embryo. This new gene regulatory region appears to be a missing link in the testis development system, and it is significant that duplications in this region can initiate the development of testicles in a person who has XX chromosomes. Further studies are now needed to ascertain if testis development can be initiated by switching on this region in growing cells and in developmental animal models.

Researcher Dr Jacqueline Hewitt, from the Royal Children's Hospital Melbourne, Australia, said:

"We have known for a while that for testes to form in the embryo, a key gene called SOX9 needs to be activated. However, until now, the mechanism by which this activation occurs has been unclear.

"Our research indicates that there is a gene regulatory region on chromosome 17, upstream of the SOX9 gene, which is involved in the initiation of testicle development in the foetus. This regulatory region is sited a distance away from the SOX9 gene itself, but functions to switch the gene on, allowing the formation of testicles. This illustrates the fundamental importance of not just the actual , but also of gene regulation systems in human development. We are only now beginning to understand the mechanisms of , which are essential for the development of a complex organism such as a human child. This research significantly advances our understanding of how the testes develop in the human body."

Explore further: Researchers discover gene required to maintain male sex throughout life

Related Stories

Researchers discover gene required to maintain male sex throughout life

July 20, 2011
University of Minnesota Medical School and College of Biological Sciences researchers have made a key discovery showing that male sex must be maintained throughout life.

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.