Inflammatory mediator enhances plaque formation in Alzheimer's disease

September 7, 2011, Cell Press

Alzheimer's disease (AD) is a devastating neurodegenerative disorder that causes progressive cognitive impairment and memory loss. Now, a new study published by Cell Press in the September 8 issue of the journal Neuron identifies a previously unrecognized link between neuroinflammation and the classical pathological brain changes that are the hallmark of the disease. In addition, the research identifies a new potential therapeutic target for AD.

AD is characterized by abnormal accumulation of amyloid Β (AΒ) protein plaques and neurofibrillary tangles of tau protein in the brain. In addition to these classical hallmarks, neuroinflammation has also been identified as a major component of the disease. Previous research has suggested that AD associated inflammation increases the inducible nitric oxide synthase (NOS2) in and support cells. Importantly, NOS2 leads to generation of nitric oxide (NO) which has been linked with neurodegeneration.

"One of the fingerprints of NO is tyrosine nitration, a posttranslational protein modification that can induce structural changes leading to protein aggregation," explains senior study author, Dr. Michael T. Heneka, from the University of Bonn in Germany. "Since there is so far no mechanistic explanation how expression of NOS2 and the subsequent production of NO and its reaction products modulate AΒ and thereby the progression of AD, we speculated that nitration of AΒ might contribute to AD pathology."

In their study, first author Dr. Markus P. Kummer and colleagues discovered that AΒ is a novel NO target. They observed nitrated AΒ in AD and AD mouse models and found that this modification accelerated the deposition of human AΒ. Importantly, reduction of NOS2 reduced AΒ deposition and memory deficits in a mouse model of AD. Further, nitrated AΒ induced the formation of amyloid plaques when injected into the brains of mice with genetic mutations associated with AD.

"Taken together, our results identify a novel modification of AΒ, tyrosine nitration, and propose a causative link between the AΒ cascade, activation of NOS2, and the subsequent increase in its reaction product during AD," concludes Dr. Heneka. "We think that nitrated AΒ may serve as marker of early AΒ plaque formation. More importantly, it may be a promising target for an AD therapy, and that application of specific inhibitors of NOS2 may therefore open a new therapeutic avenue in AD."

Related Stories

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

New study reveals why some people are more creative than others

January 16, 2018
Creativity is often defined as the ability to come up with new and useful ideas. Like intelligence, it can be considered a trait that everyone – not just creative "geniuses" like Picasso and Steve Jobs – possesses in ...

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.