Key function of mutation in hereditary breast and ovarian cancer gene discovered

September 1, 2011

It is widely known that mutations in the breast cancer susceptibility 1 (BRCA1) gene significantly increase the chance of developing breast and ovarian cancers, but the mechanisms at play are not fully understood. Now, researchers at Virginia Commonwealth University Massey Cancer Center have shown that certain BRCA1 mutations result in excessive, uncontrolled DNA repair, which challenges the prior assumption that mutations in BRCA1 only contribute to breast cancer through a reduction in function.

Recently published in the journal Aging, the study led by Kristoffer Valerie, Ph.D., discovered that certain BRCA1 mutations affecting the BRCA1 C-terminal (BRCT) resulted in excessive DNA repair, or hyper-recombination, which may contribute to the development of breast and ovarian cancers. The BRCT domain is a protein binding site typically found on DNA repair proteins like BRCA1 that are responsible for maintaining genomic stability and facilitating DNA repair. This study has implications for the treatment, diagnosis and development of therapies for patients with breast and ovarian cancer.

"Our findings suggest that caution should be exercised when targeting BRCA1 for breast and ovarian cancer therapies," says Valerie, co-leader of the Radiation Biology and Oncology program and a professor in the Department of at VCU Massey Cancer Center. "We need to better understand the that lead to the development of breast and before we attempt to attack it through targeted therapies aimed at causing ."

When DNA damage occurs, various forms of BASC (BRCA1-associated genome surveillance complex) bind to the BRCT domain on BRCA1. BASC is a protein complex that in part binds to the BRCT domain and serves as a "docking site" for other proteins and enzymes to come in, effectively repair the DNA damage and leave when repair is completed. However, certain BRCT mutants unable to bind to BASC disrupt the delicate DNA repair process. Previously, it was assumed this meant that BRCA1 was unable to assist with the repair process and, thus, did not occur.

Valerie and his colleagues showed through experiments with cultured breast cancer cells and tissue samples from patients that BRCT increased ubiquination of BASC, which, in turn, increased recombination several-fold over normal levels. Ubiquitin is a small protein in all living organisms that "marks" other proteins for degradation or, as more recently discovered, the participation in specific cellular processes such as recombination. The researchers proposed that the hyper-recombination resulting from increased ubiquination of the BASC might result in improperly repaired DNA and increased genomic instability, which could lead to the development and aggressive progression of breast and ovarian cancers.

"Our results point to ubiquitination as a potential therapeutic target," says Valerie. "By disrupting ubiquitination we may be able to prevent hyper-recombination and stop the growth of cancer cells with these BRCT mutations. This might sensitize the cancer cells to radiation therapy while having little effect on cells with normal BRCA1 function."

The researchers hope to continue studying the role of BRCA1 in DNA double-strand break repair in order to determine whether the mutations they examined are important for the onset of cancer and whether targeted therapies can be developed.

More information: The full manuscript of this study is available online at: www.impactaging.com/papers/v3/n5/abs/100325a.html

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.