Mechanism uncovered for the establishment of vertebrate left-right asymmetry

September 29, 2011

A research team at the Hubrecht Institute, Utrecht, demonstrates a mechanism by which left–right asymmetry in the body is established and maintained. The study, published in the open-access journal PLoS Genetics on September 29, offers a new model of how families of genes interact to promote and direct body asymmetry.

Although organisms appear bilaterally symmetrical when observed from the outside, internal organs are positioned asymmetrically along the left–right axis, and the organs themselves exhibit intrinsic left–right asymmetries. While complete organ reversal (situs inversus) rarely gives rise to medical complications, severe medical problems occur in infants with partial organ reversal (situs ambigious or heterotaxia), including improper connections of the major vessels to the heart. These heart defects are often lethal if not immediately corrected after birth by cardiac surgery, meaning that the establishment of correct left–right is a critical process.

The researchers, led by Dr. Jeroen Bakkers, identified a receptor for bone morphogenetic proteins (BMP) as a regulator of left–right patterning in zebrafish using a forward genetic screen. Two growth factors, Nodal and BMP, have previously been shown to be important for orchestrating left–right asymmetry, but the mechanism and hierarchy for the regulation of this process had been unclear. The data presented in this study reveal a new mechanism by which these proteins pattern the embryo along the left–right axis, through the induction and maintenance of a genetic midline 'barrier'.

Dr. Bakkers and colleagues conclude that further studies are required to tease out whether there are species–specific differences during the development of embryonic left–right patterning, but this study and another by other researchers studying mouse development lend support for a conservation of this pathway in regulating organism left–right asymmetry.

More information: Smith KA, Noël E, Thurlings I, Rehmann H, Chocron S, et al. (2011) Bmp and Nodal Independently Regulate lefty1 Expression to Maintain Unilateral Nodal Activity during Left-Right Axis Specification in Zebrafish. PLoS Genet 7(9): e1002289. doi:10.1371/journal.pgen.1002289

Related Stories

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.