Scientists establish a new class of anti-diabetic compound

September 4, 2011, The Scripps Research Institute

In a joint study, scientists from The Scripps Research Institute and Harvard University's Dana-Farber Cancer Institute have established a new class of anti-diabetic compound that targets a unique molecular switch.

The finding paves the way for the development of anti-diabetic therapeutics with minimal adverse plaguing currently available drugs such as Avandia (rosiglitazone), scheduled to be removed from pharmacy shelves this fall due to concerns about increased risk of heart attack.

The new study, led by Patrick R. Griffin, professor and chair of the Department of at Scripps Florida, Bruce Spiegelman, professor of at the Dana-Farber Cancer Institute, and Theodore Kamenecka, associate scientific director of at Scripps Florida, was published September 4, 2011, in the journal Nature. The study describes a new compound known as SR1664.

"In this study, we demonstrate that we have discovered novel compounds that work effectively through a unique mechanism of action on a well-validated clinical target for diabetes," said Griffin. "This unique mechanism of action appears to significantly limit side effects associated with marketed drugs. This study is a great example of interdisciplinary, inter-institutional collaboration with chemistry, biochemistry, , and pharmacology."

"It appears that we may have an opportunity to develop entire new classes of drugs for diabetes and perhaps other metabolic disorders," said Spiegelman.

Diabetes affects nearly 24 million children and adults in the United States, according to the America Diabetes Association.

A Viable Therapeutic Target

The study follows previous research by the authors published last year in Nature (Volume 466, Issue 7305, 451-456) that suggested an obesity-linked mechanism that may be involved in the development of insulin-resistance. In that research, the team found disruptions in various genes when a protein known as PPARγ undergoes phosphorylation (when a phosphate group is added to a protein) by the kinase Cdk5, an enzyme involved in a number of important sensory pathways.

The new study confirms that blockage of Cdk5's action on PPARG is a viable therapeutic approach for development of anti-diabetic agents. The new SR1664 compound is a potent binder to the nuclear receptor PPARG, but does not activate gene transcription via the receptor's normal mechanism.

While Griffin stressed the difficulty of fully assessing side effects of new compounds such as SR1664, the new research is extremely positive in that it clearly demonstrated fewer of the major well-documented side effects, such as weight gain or increased plasma volume, from SR1664 as compared to Avandia in diabetic mice.

While both the mice treated with Avandia and those treated with SR1664 demonstrated improved blood sugar levels, those treated with Avandia showed weight gain and increased fluid retention within a few days of beginning treatment; those being treated with SR1664 showed none of these side effects. In cell culture studies, SR1664 also appeared to have little effect on bone formation, nor did it increase fat generation in bone cells, another side effect of current therapies such as Avandia.

While S1664 likely will not be developed as a drug, it now serves as a molecular scaffolding for the creation of similar compounds with potential to treat diabetes. "With data in hand showing that our compounds are as efficacious as the currently marketed PPARG modulators, while demonstrating a significant improvement of side effects in limited studies, we are now advancing newer compounds with improved pharmaceutical properties into additional studies," Griffin said.

Explore further: Diabetes drug side effects traced to fat action

More information: "Anti-Diabetic Actions of a Non-Agonist PPARG Ligand Blocking Cdk5-Mediated Phosphorylation," by Jang Hyun Choi, Alexander S. Banks, et al, Nature.

Related Stories

Diabetes drug side effects traced to fat action

July 5, 2011
For better or worse, a popular class of anti-diabetic drugs does more than lower blood sugar. One known as rosiglitazone (trade name Avandia) has been in the spotlight for its possible link to increased cardiovascular events, ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.