Modeling cancer using ecological principles

October 3, 2011

The invasion of a new species into an established ecosystem can be directly compared to the steps involved in cancer metastasis. New research published in BioMed Central's open access journal Theoretical Biology and Medical Modelling uses the Tilman model of competition between invasive species to study the metastasis of prostate cells into bone.

Approximately 40,000 men a year in the US who have apparently successful surgery or radiotherapy for prostate cancer will suffer incurable metastasis of their disease in bone. The invade the bone marrow and, sometimes after years of remaining dormant, compete with and take over the bone microenvironment.

The Tilman model examines various components of invasion of species into an environment. Kun-Wan Chen and Kenneth J. Pienta from the University of Michigan substituted steps in cancer progression into the Tilman equations. After initially multiplying and undergoing genetic mutation (equivalent to evolution) within the prostate, the leave the prostate and enter the circulation. The next step is a period of survival in circulation followed by invasion into bone.

Once in the bone there is a 'lag period' while the cells establish themselves. Eventually, the cancer cells begin to multiply and out-compete the hematopoietic stem cells. Kun-Wan Chen explained, "The invading cancer cells could be thought of as several species, and the fittest mutants become dominant and multiply. Eventually there is a massive impact on the biosphere (human host)."

Prof Pienta continued, "Devastating ecological invasions are well known. For example introduction of domestic animals to Mauritius resulted in extinction of the dodo and Caulerpa taxifolia, a mutated killer algae, is plaguing the Mediterranean. follows a similar path to that of ecological invasions and our adaptation of the Tilman equations shows how invading cancer cells can destroy the normal body habitat. Use of ecological modeling can help us understand the complex biology of metastasis."

More information: Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles, Kun-Wan Chen and Kenneth J Pienta, Theoretical Biology and Medical Modelling (in press)

Related Stories

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.