Circadian clock may impact organ transplant success

October 4, 2011, Georgia Health Sciences University

Health care providers assess blood and tissue type as well as organ size and health to enhance transplant success. New research indicates that checklist might also need to include the circadian clock.

While some human studies have shown the time of day transplant surgery is performed can influence the outcome, this study of mice with dysfunctional is the first correlating circadian clocks with transplant success, said Dr. Daniel Rudic, vascular biologist at Georgia Health Sciences University and corresponding author of the study published in .

The GHSU researchers found that arteries of mice with dysfunction became thick and diseased within a few weeks of being transplanted to healthy mice. Arteries transplanted from healthy mice to the remained healthy.

, and resulting blood loss to donated organs, is a key pitfall for transplant patients, potentially leading to and rejection.

"You take an organ out of a human, you don't think about it having a bad clock," Rudic said. "But the fact is the time at which you do the organ transplant may influence overall success and, if you have a donor who has a sleep disorder or is a night shift worker, it may affect it as well."

Since even healthy clocks produce variability in tissue function across the span of a day, transplantation might be best performed during optimal organ function, he said.

In addition to enabling sleep/wake cycles, circadian clocks are found throughout the body and involved in a lot more than sleep. "The clock is expressed not only in the brain but everywhere in the body and can function autonomously in different areas," Rudic said.

"Our research shows it's the clock within the blood vessel that is key to conferring the disease response in this case," said Dr. Bo Cheng, GHSU and the study's first author.

While the researchers can determine whether clock gene expression is up, down or mutated, there is currently no way to do the tests in humans. Until screening tests are identified, donors could be screened for signs of dysfunction such as a sleep disorder or even aberrant behaviors that can impair healthy clocks, such as shift work, Rudic said. "Ideally this will open up some new research avenues," he said.

Interestingly, when blood vessels from the mutant mouse stay in that mouse, disease progression is much slower. "We believe that bad clock function worsens when it intersects with disease, so if you are eating a high-fat diet or if you undergoing a serious surgery like a transplant, and you have a bad clock, disease may occur and may occur quickly," Rudic said.

In 2009, he reported in the journal Circulation that mice with mutated or missing were prone to vascular disease similar to smokers and people with high blood pressure and cholesterol. That study showed the blood vessel clocks regulate key signaling that enables blood vessel dilation and remodeling.

Explore further: Newly discovered molecule essential to resetting 'body clocks'

Related Stories

Newly discovered molecule essential to resetting 'body clocks'

July 13, 2011
(PhysOrg.com) -- Research has shown that light is the key to getting our 'body clocks' back in sync and now a new study exploring the resynchronisation mechanism in insects has discovered a molecule essential to the process.

Failure of brain's clock could play role in causing neuropsychiatric disorders

September 21, 2011
(Medical Xpress) -- Neuropsychiatric disorders are the second largest cause of morbidity and premature mortality worldwide. The scientific community has widely accepted that people who battle neuropsychiatric disorders such ...

Researchers observe disruptions of daily rhythms in Alzheimer's patients' brains

April 27, 2011
Twenty-four hour cycles, known as circadian rhythms, are important for proper body functions, including for normal brain function and mental health. Disruptions of circadian rhythms and sleep-wake cycles have been observed ...

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.