Another clue to how obesity works

October 14, 2011, Monash University

(Medical Xpress) -- The effects of obesity - both on our bodies and on the health budget - are well known, and now, scientists are getting closer to understanding how the disease progresses, providing clues for future treatments.

In a study, published today in the prestigious journal , researchers at Monash University in collaboration with colleagues in the United States, have revealed how resistance to the , a key causal component of obesity, develops.

Lead author Professor Tony Tiganis, of the Monash Obesity and Diabetes Institute and Monash University's Department of Biochemistry and Molecular Biology, said our bodies produce leptin in response to increasing fat deposits.

"Acting on a part of the brain called the , leptin instructs the body to increase and decrease , and so helps us maintain a healthy body weight," said Professor Tiganis.

"The body’s response to leptin is diminished in overweight and obese individuals, giving rise to the concept of ‘leptin-resistance’. We've discovered more about how ‘leptin-resistance’ develops, providing new directions for research into possible treatments."

Two proteins are already known to inhibit leptin in the brain and Professor Tiganis' team have discovered a third. In mice, this third protein becomes more abundant with weight-gain, exacerbating leptin-resistance and hastening progression to morbid obesity. The study showed that the three negative regulators of leptin take effect at different stages, shedding light on how obesity progresses.

"Drugs targeting one of the negative regulators are already in clinical trials for Type 2 , however, our research shows that in terms of increasing leptin-sensitivity in obesity, targeting only one of these won't be enough. All three regulators might need to be switched off," said Professor Tiganis.

The study showed that high fat diet-induced weight gain is largely prevented in genetically-modified mice when two of the negative regulators are deleted in the brain.

“We now have to determine what happens when all three negative regulators are neutralised. Do we prevent high fat diet-induced obesity?”

Professor Tiganis said the more that is known about obesity, the better equipped scientists are to develop drugs to support good diet and exercise choices.

"Humans have a deep-seated attraction to overeating and nutrient-rich food, inherited from our hunter-gatherer ancestors. Now that food is more readily available and our lifestyles are less active, our evolutionary drive to overeat is becoming problematic."

More than four million Australians are obese and if current trends continue, by 2020, more than 80 per cent of adults and almost one third of children will be overweight or obese. Studies indicate that obesity and related health issues cost Australians more than $56 billion a year.

"Simply telling people to eat less and exercise more is not going to be sufficient to reverse the trend. There is a pressing need to develop novel drugs that complement diet and exercise to both prevent and treat this disease," said Professor Tiganis.

Explore further: Voluntary exercise by animals prevents weight gain, despite high-fat diet

Related Stories

Voluntary exercise by animals prevents weight gain, despite high-fat diet

May 18, 2011
(Medical Xpress) -- University of Cincinnati (UC) researchers have found that animals on a high-fat diet can avoid weight gain if they exercise.

Recommended for you

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

Research discovers possible link between Crohn's and Parkinson's in Jewish population

January 11, 2018
Mount Sinai Researchers have just discovered that patients in the Ashkenazi Jewish population with Crohn's disease (a chronic inflammatory of the digestive system) are more likely to carry the LRRK2 gene mutation. This gene ...

Scientists use gene expression to understand how astrocytes change with age

January 11, 2018
Potentially explaining why even healthy brains don't function well with age, Salk researchers have discovered that genes that are switched on early in brain development to sever connections between neurons as the brain fine-tunes, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.