Dioxin-like chemical messenger makes brain tumors more aggressive

October 6, 2011, University Hospital Heidelberg

A research alliance of Heidelberg University Hospital and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), jointly with colleagues of the Helmholtz Center for Environmental Research in Leipzig, have discovered a new metabolic pathway which makes malignant brain tumors (gliomas) more aggressive and weakens patients' immune systems. Using drugs to inhibit this metabolic pathway is a new approach in cancer treatment. The group's results have been published in the prestigious specialist journal Nature.

Glioma is the most frequent and most in adults. In Germany, about 4,500 people are newly diagnosed with every year. About 75 percent of such tumors are considered particularly aggressive with an of eight months to two years. The standard treatment is surgery to remove the tumor as completely as possible, followed by radiotherapy, usually in combination with chemotherapy. However, results are unsatisfactory, because these tumors are very resilient and soon start growing back. Therefore, there is an urgent need for new treatment approaches.

Tumors grow more aggressively and immune system is weakened

The Helmholtz Junior Research Group "Experimental " led by Professor Dr. Michael Platten of DKFZ and the Department of Neurooncology of Heidelberg University Hospital and the National Center for Tumor Diseases (NCT) headed by Professor Dr. Wolfgang Wick have come across the kynurenin molecule in their studies of human and in the . Kynurenin is formed when the amino acid tryptophan – a protein component taken in with food – is broken down in the body. "We have been able to detect increased levels of kynurenin in cancer cells of glioma patients with particularly aggressive tumors," Professor Michael Platten explained. The current research results from Heidelberg show that this link also appears to exist in other types of cancer such as cancers of the bladder, bowel or lungs.

It was even more astonishing for the investigators to find that kynurenin activates a protein known as dioxin receptor. This, in turn, triggers a cascade of chemical reactions which ultimately promote tumor growth and weaken the immune system. So far, it had only been known that the dioxin receptor, scientifically called aryl hydrocarbon receptor (AHR), is activated by environmental toxins. "Why this receptor is even present in body cells and which is its activation partner in the body, was yet unknown," says Dr. Christiane Opitz, first author of the research article. "Kynurenin seems to have very similar effects as dioxin, but it is formed by the body itself," said Professor Platten.

Yet another new discovery was presented by the group: The amino acid tryptophan was broken down in cancer cells by a specific enzyme called tryptophan dioxygenase, or TDO for short, which scientists had previously found primarily in liver cells. "It came as a surprise to us that TDO is also active in cancer cells and strongly so in particularly aggressive tumors."

Searching for substances to specifically inhibit this metabolic pathway

The newly discovered is a potential target for . The intention is to inhibit tumor growth and strengthen the immune system. "We will start searching for substances that specifically inhibit this metabolic pathway and may be used as potential antitumor drugs," said Professor Wolfgang Wick envisioning the next steps ahead.

More information: Christiane A. Opitz, Ulrike M. Litzenburger, Felix Sahm, Martina Ott, Isabel Tritschler, Saskia Trump, Theresa Schumacher, Leonie Jestaedt, Dieter Schrenk, Michael Weller, Manfred Jugold, Gilles J. Guillemin, Christine L. Miller, Christian Lutz, Bernhard Radlwimmer, Irina Lehmann, Andreas von Deimling, Wolfgang Wick, Michael Platten. An endogenous ligand of the human aryl hydrocarbon receptor promotes tumor formation. DOI: 10.1038/nature10491

Related Stories

Recommended for you

T-cells engineered to outsmart tumors induce clinical responses in relapsed Hodgkin lymphoma

January 16, 2018
WASHINGTON-(Jan. 16, 2018)-Tumors have come up with ingenious strategies that enable them to evade detection and destruction by the immune system. So, a research team that includes Children's National Health System clinician-researchers ...

Researchers identify new treatment target for melanoma

January 16, 2018
Researchers in the Perelman School of Medicine at the University of Pennsylvania have identified a new therapeutic target for the treatment of melanoma. For decades, research has associated female sex and a history of previous ...

More evidence of link between severe gum disease and cancer risk

January 16, 2018
Data collected during a long-term health study provides additional evidence for a link between increased risk of cancer in individuals with advanced gum disease, according to a new collaborative study led by epidemiologists ...

Researchers develop a remote-controlled cancer immunotherapy system

January 15, 2018
A team of researchers has developed an ultrasound-based system that can non-invasively and remotely control genetic processes in live immune T cells so that they recognize and kill cancer cells.

Dietary fat, changes in fat metabolism may promote prostate cancer metastasis

January 15, 2018
Prostate tumors tend to be what scientists call "indolent" - so slow-growing and self-contained that many affected men die with prostate cancer, not of it. But for the percentage of men whose prostate tumors metastasize, ...

Pancreatic tumors may require a one-two-three punch

January 15, 2018
One of the many difficult things about pancreatic cancer is that tumors are resistant to most treatments because of their unique density and cell composition. However, in a new Wilmot Cancer Institute study, scientists discovered ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.