Neuroscientists unlock shared brain codes

October 20, 2011

A team of neuroscientists at Dartmouth College has shown that different individuals' brains use the same, common neural code to recognize complex visual images.

The paper, "A common, high-dimensional model of the neural representational space in human ventral temporal ," is in the October 20, 2011, issue of the journal, Neuron. The lead author of the paper is James Haxby, the Evans Family Distinguished Professor of in the Department of Psychological and . Haxby is also the Director of the Cognitive Neuroscience Center at Dartmouth and a professor in the Center for Mind/Brain Sciences at the University of Trento in Italy. Swaroop Guntupalli, a graduate student in Haxby's laboratory, developed the software for the new methods and ran the tests of their validity.

Haxby developed a new method called hyperalignment to create this common code and the parameters that transform an individual's patterns into the code.

The parameters are a set of numbers that act like a combination that unlocks that individual's brain's code, Haxby said, allowing activity patterns in that person's brain to be decoded – specifying the that evoked those patterns -- by comparing them to patterns in other people's brains.

"For example, patterns of brain activity evoked by viewing a movie can be decoded to identify precisely which part of the movie an individual was watching by comparing his or her brain activity to the brain activity of other people watching the same movie," said Haxby.

When someone looks at the world, visual images are encoded into patterns of brain activity that capture all of the subtleties that make it possible to recognize an unlimited variety of objects, animals, and actions.

"Although the goal of this work was to find the common code, these methods can now be used to see how brain codes vary across individuals because of differences in visual experience due to training, such as that for air traffic controllers or radiologists, to cultural background, or to factors such as genetics and clinical disorders," he said.

Because of variability in brain anatomy, brain decoding had required separate analysis of each individual. Although detailed analysis of an individual could break that person's brain code, it didn't say anything about the brain code for a different person. In the paper, Haxby shows that all individuals use a common code for visual recognition, making it possible to identify specific patterns of brain activity for a wide range of visual images that are the same in all brains.

As a result of their research, the team showed that a pattern of brain activity in one individual can be decoded by finding the picture or movie that evoked the same pattern in other individuals.

Participants in the study watched the movie Raiders of the Lost Ark while their patterns of brain activity were measured using fMRI. In two separate experiments, they viewed still images of seven categories of faces and objects – male and female human faces, monkey faces, dog faces, shoes, chairs and houses – or six animal species – squirrel monkeys, ring-tailed lemurs, mallards, yellow-throated warblers, ladybugs and luna moths. Analysis of the brain evoked by the movie produced the common code. Once the patterns were in the common code, including responses that were not evoked by the movie, distinct patterns were detected that were common across individuals and specific for fine distinctions, such as monkey versus dog faces, squirrel monkeys versus lemurs.

Explore further: New study examines brain processes behind facial recognition

Related Stories

New study examines brain processes behind facial recognition

April 18, 2011
When you think you see a face in the clouds or in the moon, you may wonder why it never seems to be upside down.

Brain imaging reveals the movies in our mind

September 22, 2011
Imagine tapping into the mind of a coma patient, or watching one's own dream on YouTube. With a cutting-edge blend of brain imaging and computer simulation, scientists at the University of California, Berkeley, are bringing ...

Recommended for you

Worms learn to smell danger

October 17, 2017
Worms can learn. And the ways they learn and respond to danger could lead scientists to new treatments for people with neurodegenerative diseases.

Team finds training exercise that boosts brain power

October 17, 2017
One of the two brain-training methods most scientists use in research is significantly better in improving memory and attention, Johns Hopkins University researchers found. It also results in more significant changes in brain ...

'Busybody' protein may get on your nerves, but that's a good thing

October 17, 2017
Sensory neurons regulate how we recognize pain, touch, and the movement and position of our own bodies, but the field of neuroscience is just beginning to unravel this circuitry. Now, new research from the Salk Institute ...

Mechanism explains how seizures may lead to memory loss

October 16, 2017
Although it's been clear that seizures are linked to memory loss and other cognitive deficits in patients with Alzheimer's disease, how this happens has been puzzling. In a study published in the journal Nature Medicine, ...

Study shows people find well-being more so from special places than from mementoes

October 16, 2017
(Medical Xpress)—A team of researchers at the University of Surrey has found that people experience a feeling of well-being when thinking about or visiting a place that holds special meaning to them. They also found that ...

fMRI scans reveal why pain tolerance goes up during female orgasm and shows brain does not turn off

October 13, 2017
(Medical Xpress)—A team of researchers at Rutgers University has determined why women are able to tolerate more pain during the time leading up to and during orgasm. In their paper published in the Journal of Sexual Medicine, ...


Adjust slider to filter visible comments by rank

Display comments: newest first

2 / 5 (5) Oct 20, 2011
Code? Then dynamic.
At most, pliable hard-wiring rewiring at the rate of input from external stimuli delivered by the senses.

...that evoked the same pattern in other individuals.

Same pattern? Where? Same region, at the most.

People hearing sound when viewing motion?
People when touched hearing sound?

Not even wrong.
1 / 5 (2) Oct 20, 2011
lol Hush1. . .I immediately thought of you after reading this article, and then. . .here you are.
It's not my forte, so I will not comment further.
4 / 5 (1) Oct 20, 2011
Patterns of Persistence
not rated yet Oct 20, 2011
Supplement to persistence:

In ancient times (1976) researchers conjunctured the following, here a partial abstract:

"The interpretation is that visual persistence is an active, continuously operating process rather than a passive neural copy of the stimulus."
not rated yet Oct 21, 2011
What about people that experience extreme sensory stochastic resonance ?
not rated yet Oct 26, 2011
Well, kudos, Isaacsname. Astute.
Extreme? The descriptor makes no sense.

Sensory stochastic resonance appears universal - all life(all cells).

Physically, noise IS a state that is universal.

QM and gravity 'detectives' in search of gravity waves and superpositions and/or entanglements will go the ANY length to avoid noise.

Because the word "extreme" makes no sense to me in the context of sensory stochastic resonance, I can not tell what point you are making with that descriptor.

What do you mean by "extreme?" (How much is extreme?)
What do you mean by "experience?" (What event represent experience?)
What do you mean by "people?" (Who has this?)

There is saturation point, sensory adaptation...

I recommend this literature. In light of the fact that I almost never recommend literature. Yes, 1997 - almost modern.

Your thoughts are of more value, when readers don't have to guess the point you are making.

not rated yet Oct 26, 2011
Hyperalignment does not produce code. Much less common code representing all things physical experienced.

Hyperalignment is hype. A lot of noise. Much ado about nothing.
not rated yet Oct 26, 2011
Not even wrong.
not rated yet Oct 26, 2011
Neuroscientists unlock shared nonsense.

There. Much better.
not rated yet Oct 26, 2011
is this related to?


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.