Scientists chart gene expression in the brain across lifespan

October 28, 2011, Johns Hopkins University Bloomberg School of Public Health

The "switching on" or expression of specific genes in the human genome is what makes each human tissue and each human being unique. A new study by researchers at the Johns Hopkins Bloomberg School of Public Health, the Lieber Institute for Brain Development, and the National Institute of Mental Health found that many gene expression changes that occur during fetal development are reversed immediately after birth. Reversals of fetal expression changes are also seen again much later in life during normal aging of the brain.

Additionally, the team observed the reversal of fetal expression changes in Alzheimer's disease findings reported in other studies. The research team also found that change is fastest in human brain tissue during fetal development, slows down through childhood and adolescence, stabilizes in adulthood, and then speeds up again after age 50, with distinct redirection of expression changes prior to birth and in . Their findings are published in the Oct. 27, 2011, edition of Nature.

All of the data are available to the public as a web-based resource at: http://www.libd.org/braincloud.

Using a number of genomic analysis technologies, the research team conducted genome-wide genetic (DNA) and gene expression (RNA) analyses of brain tissue samples from the . Tissue represented the various stages of the human lifespan.

"We think that these coordinated changes in gene expression connecting fetal development with aging and neurodegeneration are central to how the genome constructs the human brain and how the brain ages," said Carlo Colantuoni, PhD, one of the lead authors of the study and a former research associate with the Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health. Colantuoni recently joined the Lieber Institute for on the Johns Hopkins Medical Campus.

The research also showed that gene expression differences between genetically diverse individuals (of different races, for example) are no greater than the differences between individuals sharing many more genetic traits.

"Our findings highlight the fact that current technologies and analysis methods can address the effects of individual genetic traits in isolation, but we have virtually no understanding of how our many millions of genetic traits work in concert with one another," added Colantuoni.

Explore further: Found in the developing brain: Mental health risk genes and gender differences

Related Stories

Found in the developing brain: Mental health risk genes and gender differences

October 26, 2011
Most genes associated with psychiatric illnesses are expressed before birth in the developing human brain, a massive study headed by Yale University researchers discovered. In addition, hundreds of genetic differences were ...

Our brains are made of the same stuff, despite DNA differences

October 26, 2011
Despite vast differences in the genetic code across individuals and ethnicities, the human brain shows a "consistent molecular architecture," say researchers supported by the National Institutes of Health. The finding is ...

Study reveals new link between Alzheimer's disease and healthy aging

August 15, 2011
Alzheimer's disease and frontotemporal lobar degeneration (FTLD) are two of the most prevalent forms of neurodegenerative disorders. In a study published online today in Genome Research, researchers have analyzed changes ...

Recommended for you

Researchers discover cell structure that plays a role in epigenetic inheritance

May 22, 2018
We know a lot about how genes get passed from parent to child, but scientists are still unraveling how so-called epigenetic information—instructions about which genes to turn on and off—is conveyed from generation to ...

Fruit flies: 'Living test tubes' to rapidly screen potential disease-causing human gene

May 22, 2018
It all began with one young patient; a 7-year old boy who was born without a thymus, an important organ of the immune system, and without functional immune cells. The boy also presented with cardiac and skeletal defects, ...

Advance genetics study identifies virulent strain of tuberculosis

May 22, 2018
LSTM's Dr. Maxine Caws is co-lead investigator on an advanced genetics study published in Nature Genetics, which has shown that a virulent strain of tuberculosis (TB) has adapted to transmit among young adults in Ho Chi Minh ...

Cell types underlying schizophrenia identified

May 22, 2018
Scientists at Karolinska Institutet in Sweden and University of North Carolina have identified the cell types underlying schizophrenia in a new study published in Nature Genetics. The findings offer a roadmap for the development ...

New brain development disorder identified by scientists

May 22, 2018
Researchers have identified a new inherited neurodevelopmental disease that causes slow growth, seizures and learning difficulties in humans.

New data changes the way scientists explain how cancer tumors develop

May 21, 2018
A collaborative research team has uncovered new information that more accurately explains how cancerous tumors grow within the body. This study is currently available in Nature Genetics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.