Scientists reverse sickle cell anemia by turning on fetal hemoglobin

October 13, 2011, Howard Hughes Medical Institute

Not long after birth, human babies transition from producing blood containing oxygen-rich fetal hemoglobin to blood bearing the adult hemoglobin protein. For children with sickle cell disease, the transition from the fetal to adult form of hemoglobin – the oxygen-carrying protein in blood -- marks the onset of anemia and painful symptoms of the disorder.

Now, new research led by Howard Hughes Medical Institute (HHMI) investigator Stuart H. Orkin of Children's Hospital Boston, Dana Farber Cancer Institute, and Harvard Medical School shows that silencing a protein known as BCL11A can reactivate fetal hemoglobin production in adult mice and effectively reverses sickle cell disease. The new finding, reported October 13, 2011, in , reveals that BCL11A is one of the primary factors involved in turning off fetal hemoglobin production.

"I think we've demonstrated that a single protein in the cells is a target that, if interfered with, would provide enough fetal hemoglobin to make patients better," says Orkin. "It's been hypothesized for three decades that fetal hemoglobin could be turned on once we understood the mechanism of hemoglobin switching, and this is the first evidence of a target to do that."

BCL11A is likely one of a suite of up to a dozen factors that influence fetal hemoglobin levels, Orkin says, but the new study provides hard evidence that it is one of the key players in regulating the production of fetal hemoglobin. BCL11A works as a repressor by binding to DNA and regulating gene expression.

is a genetic disease that affects hemoglobin production. It is estimated that as many as 100,000 people in the United States and many more in other parts of the world, Africa in particular, have the disease. A single nucleotide change in the hemoglobin gene causes an amino acid substitution in the hemoglobin protein from glutamic acid to valine. The resulting proteins stick together to form long fibers and cause the development of irregular, crescent-shaped red blood cells.

It is no secret to scientists or clinicians that elevating fetal hemoglobin in human sickle cell patients can help alleviate the pain-fraught episodes of fatigue and abdominal and bone pain that are hallmarks of the condition. Though a few drugs have been found that can increase fetal hemoglobin, biomedical researchers have spent decades trolling for the basic molecular mechanisms that control the shift from fetal to adult hemoglobin. Recent genome-wide association studies helped narrow the search to a few genes and now, in a critical "proof of principle" test in transgenic mice, the team led by Orkin identified the critical role of BCL11A in tamping down the production of fetal hemoglobin.

Fetal hemoglobin differs from the adult form of the protein in its affinity for oxygen. Production of fetal hemoglobin begins about two months into gestation and helps deliver from the mother's bloodstream to the developing fetus. By about 3-6 months after birth, fetal hemoglobin is almost completely replaced by adult hemoglobin. The timing, notes Orkin, explains why sickle cell patients don't experience symptoms of the disease until several months after birth.

Drug therapy with the agent hydroxyurea helps ramp up fetal hemoglobin in some patients and reduces the number of painful episodes characteristic of sickle cell. But the drug is not uniformly effective, has several side effects and its mode of action is unknown.

Orkin notes that sickle cell was the first congenital disease for which scientists determined the single amino acid change in hemoglobin that sparks the condition. That work was done 60 years ago, he says, but that knowledge has never informed therapy for the disease.

Elevating the amount of fetal hemoglobin, says Orkin, emerged as a desirable strategy for treating sickle cell as clinicians and researchers noted long ago that levels of fetal hemoglobin naturally vary among individuals and that those sickle cell patients who express more of the fetal form of the protein experience fewer episodes of pain. "The more fetal hemoglobin you have, the better," says Orkin, noting that elevating levels of the fetal protein seems to have no toxic side effects. "The cell doesn't care if it's producing fetal hemoglobin or not."

The new study was done through genetic manipulation of a mouse model of sickle cell disease, demonstrating that in the future, gene therapy may be feasible. Knowing the target protein also means the search for new drugs to govern the production of can shift to a higher gear. Finally, the new work holds promise for devising new treatments for a other congenital blood disorders known as thalassemias, which are also caused by an underproduction of adult hemoglobin.

Now that this key switch has been identified, Orkin asserts, the chances of powerful new therapies for sickle cell and other hemoglobin disorders will become more evident: "For the last 20 years we've been shooting arrows in the dark in hopes of hitting the target. Now we can see the target and it is a meaningful one."

Explore further: New approach to sickle-cell disease shows promise in mice

Related Stories

New approach to sickle-cell disease shows promise in mice

December 7, 2009
A new genetic approach to treating sickle cell disease is showing promising results in mice, report researchers from Children's Hospital Boston. By inactivating a gene they previously discovered to be important in the laboratory, ...

Gene variant linked to moderated symptoms of beta-thalassemia

January 30, 2008
Beta-thalassemia is a serious, potentially life-threatening disease that affects red blood cells, cells that carry oxygen via hemoglobin throughout the body. As part of the SardiNIA Study of Aging, supported by the National ...

Researchers find new genetic target for sickle cell disease therapy

December 4, 2008
Researchers have identified a gene that directly affects the production of a form of hemoglobin that is instrumental in modifying the severity of the inherited blood disorders sickle cell disease and thalassemia. The discovery ...

Modulator of fetal hemoglobin switch may target sickle cell disease

July 12, 2010
A retired but well-preserved mechanism for regulating viruses that has worked its way into the human genome appears to modulate a switch between adult and fetal hemoglobin production, Medical College of Georgia researchers ...

Red grape skin extract could be new treatment for sickle cell disease patients

October 22, 2009
An extract in red grape skin may be a new treatment for sickle cell disease, Medical College of Georgia researchers say.

Thalidomide analog appears worthy opponent of sickle cell disease

July 18, 2011
A thalidomide analog is shaping up as a safe, worthy opponent of sickle cell disease, Georgia Health Sciences University researchers report.

Recommended for you

Gene mutation found to cause macrocephaly and intellectual deficits

November 13, 2018
The absence of one copy of a single gene in the brain causes a rare, as-yet-unnamed neurological disorder, according to new research that builds on decades of work by a University at Buffalo biochemist and his colleagues.

Can scientists change mucus to make it easier to clear, limiting harm to lungs?

November 12, 2018
For healthy people, mucus is our friend. It traps potential pathogens so our airways can dispatch nasty bugs before they cause harm to our lungs. But for people with conditions such as cystic fibrosis (CF) and chronic obstructive ...

Mutations, CRISPR, and the biology behind movement disorders

November 12, 2018
Scientists at the RIKEN Center for Brain Science (CBS) in Japan have discovered how mutations related to a group of movement disorders produce their effects. Published in Proceedings of the National Academy of Sciences, the ...

Researchers explain how your muscles form

November 12, 2018
All vertebrates need muscles to function; they are the most abundant tissue in the human body and are integral to movement.

Salmonella found to be resistant to different classes of antibiotics

November 12, 2018
Brazil's Ministry of Health received reports of 11,524 outbreaks of foodborne diseases between 2000 and 2015, with 219,909 individuals falling sick and 167 dying from such diseases. Bacteria caused most outbreaks of such ...

High fat diet has lasting effects on the liver

November 9, 2018
Consuming a high-fat, high-sugar diet causes a harmful accumulation of fat in the liver that may not reverse even after switching to a healthier diet, according to a new study by scientists from Weill Cornell Medicine and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.