Chinese researchers tap GPU supercomputer for world's first simulation of complete H1N1 virus

November 15, 2011

Chinese researchers achieved a major breakthrough in the race to battle influenza by using NVIDIA Tesla GPUs to create the world's first computer simulation of a whole H1N1 influenza virus at the atomic level.

Researchers at the Institute of Process Engineering of (CAS-IPE) are using molecular-dynamics simulations as a "computational microscope" to peer into the atomic structure of the H1N1 virus. Using the Mole-8.5 GPU-accelerated supercomputer, which includes more than 2,200 NVIDIA Tesla GPUs, researchers were able to simulate the whole H1N1 , enabling them to verify current theoretical and experimental understandings of the virus.

"The Mole-8.5 GPU supercomputer is enabling us to perform scientific research that simply was not possible before," said Dr. Ying Ren, assistant professor at CAS-IPE. "This research is an important step in developing more effective ways to control epidemics and create anti-viral drugs."

Studying bacteria and viruses in laboratory experiments is difficult because reactions are often too fast and delicate to capture. And of these systems had previously been beyond the reach of supercomputers, due to the complexity of simulating billions of particles with the right environmental conditions.

The CAS-IPE researchers made the simulation breakthrough by developing a application that takes advantage of GPU acceleration. It was run on the Mole-8.5 GPU supercomputer, which is comprised of 288 server nodes. The system was able to simulate 770 picoseconds per day with an integration time step of 1 femtosecond for 300 million atoms or radicals.

More information: 1. J. Xu, X. Wang, X. He, Y. Ren, W. Ge.J. Li, Application of the Mole-8.5 supercomputer: Probing the whole influenza virion at the atomic level. Chinese Science Bulletin, 2011. 56: p. 2114-2118.

2. J. Xu, Y. Ren, W. Ge, X. Yu, X. Yang.J. Li, Molecular dynamics simulation of macromolecules using graphics processing unit. Molecular Simulation, 2010. 36: p. 1131-1140.

Related Stories

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.