Researchers develop more effective way to discover and test potential cancer drugs

November 13, 2011

Researchers have created a new phenotypic screening platform that better predicts success of drugs developed to prevent blood vessel tumor growth when moving out of the lab and onto actual tumors.

"This platform allows us to predict what's going to happen in preclinical models," said Enrique Zudaire, Ph.D., staff scientist in the radiation oncology branch of the , who presented the findings at the AACR-NCI-EORTC International Conference: Molecular Targets and , held Nov. 12-16, 2011. "This not only shortens the amount of time that you would need to do screenings and drug discovery but also enhances dramatically the success you're going to have in the next phases."

Zudaire and colleagues developed a phenotypic, high-content, cell-specific fluorescence platform that examines the effectiveness of angiogenesis inhibitors, which shut down or impede by hampering and thus starve the tumor.

Past research has mainly focused on identifying single molecular targets for angiogenesis inhibitors. The new phenotypic platform evaluates how angiogenic inhibitors affect simultaneously entire cells and several steps of the angiogenesis process.

"If you do a screening for activity of a particular enzyme, that's all you're going to get: a drug that targets that specific . That tells you little about how the enzyme works in a complex organization," said Zudaire. As a result, he explained, when many of these drugs advance to phase 2 clinical trials, they are either ineffective or result in side effects that are toxic to the patient.

Researchers validated the platform by screening the 1,970 small molecules that are part of the National Cancer Institute Developmental Therapeutics Program Diversity Set. Through the phenotypic platform, they identified more than 100 lead compounds that were then tested in preclinical models. All tested compounds showed antitumor activity, and some blocked tumor growth more effectively than current, FDA-approved antiangiogenic drugs.

This screening platform also ensures that researchers do not precondition the system to a known target. "We sometimes assume we know a lot about how these tumor systems work and what we should target," said Zudaire.

The researchers proposed that most of the therapeutically relevant information in pathological systems rests on the complex interactions between the different components of the system rather than on the components themselves. Interrogating these systems in an unbiased manner will reveal not only single but unknown interactions between them, which are relevant for the disease.

Ultimately, using this type of phenotypic platform can make drug development more efficient and cost-effective.

"If we improve the initial phases of , we can decide where to invest time and money on drugs that are a lot more likely to work," Zudaire said. "This study is proof of principle that the platform works. From here, we can design assays that are more complex and better able to describe what the in-vivo situation will be."

Explore further: Combination therapy shows potent tumor growth inhibition in preclinical studies

Related Stories

Combination therapy shows potent tumor growth inhibition in preclinical studies

November 13, 2011
Combining the investigational agents REGN910 and aflibercept yielded statistically significant improvements in antitumor effects in animal models compared with either agent alone, according to results presented at the AACR-NCI-EORTC ...

Researchers find surprising role for enzyme in tumor cell division and new drug to combat it

November 13, 2011
Researchers at the University of California, San Diego School of Medicine and the UC San Diego Moores Cancer Center have identified a new drug discovery approach enabling the destruction of the most highly proliferative tumors. ...

Researchers gain new insights into how tumor cells are fed

August 8, 2011
Philadelphia, PA, August 8, 2011 – Researchers have gained a new understanding of the way in which growing tumors are fed and how this growth can be slowed via angiogenesis inhibitors that eliminate the blood supply ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

New study reveals breast cancer cells recycle their own ammonia waste as fuel

October 19, 2017
Breast cancer cells recycle ammonia, a waste byproduct of cell metabolism, and use it as a source of nitrogen to fuel tumor growth, report scientists from Harvard Medical School in the journal Science.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.