First evidence of new 'druggable' DNA repair target to destroy cancer cells

November 7, 2011

(Medical Xpress) -- Blocking a key DNA damage repair enzyme, called APE1, could provide a new way to kill cancer cells containing faulty BRCA genes, according to research presented at the National Cancer Research Institute (NCRI) Cancer Conference in Liverpool, today.

Researchers at The University of Nottingham have developed small molecules that block APE1. They tested the ability of these molecules to stop the enzyme from repairing DNA damage in breast, pancreatic and cells containing faults in BRCA1 or BRCA2 genes.

The BRCA genes control a separate, major pathway. Cells with damaged BRCA1 or BRCA2 have a faulty ‘repair kit’. This allows damaged cells to accumulate faults and multiply out of control – which increases the risk of developing cancer, especially ovarian and breast cancer.

But too much damage can lead to cell death. Blocking APE1 in these BRCA-deficient cells effectively blocks two repair routes at once, killing the .

This technique of blocking two repair routes is already being used with a new class of drugs called PARP inhibitors. These prevent cells fixing faults in BRCA-deficient cells by blocking PARP, a key enzyme in the same repair pathway as APE1.

APE1, like PARP, is essential for carrying out a type of DNA damage repair – removing and correcting faulty DNA components – but has a more specific role in this repair process compared to the PARP enzymes.

The research suggests that APE1 could provide an additional drug target to PARP.

Dr Srinivasan Madhusudan, clinical senior lecturer and consultant in medical oncology, who is leading the APE1 drug discovery research programme at The University of Nottingham, said: “This important study provides the first evidence that APE1 is an important new target for personalised cancer treatment.

“Not only could these provide a basis for new drugs to treat cancers with faulty BRCA genes – especially breast and ovarian cancer – but they could help ‘soften up’ cells from many cancer types to boost the effect of radiotherapy and chemotherapy.”

Professor Steve Jackson, a DNA damage repair expert, said: “Destroying cancer cells by knocking out two repair mechanisms simultaneously is emerging as an important way to treat the disease. We’ve already made strides in developing treatments that do this, and this new research builds on that work.

“This promising new target may lead to even more specific drugs capable of delivering a knock-out double blow to cancer cells, leaving healthy cells unharmed - so potentially causing fewer side effects.

“It also brings fresh hope for the development of new drugs which can be prescribed when patients become resistant to conventional treatments. We’ll look forward to further development of potential new drugs to block this very specific target with great interest.”

Baroness Delyth Morgan, Chief Executive of Breast Cancer Campaign, which part-funded the research, said: "With up to ten per cent of all breast cancers thought to result from faulty BRCA1 and/or 2 genes, new treatments for these patients could possibly help up to 4,800 of the women diagnosed with the disease in the UK each year. Currently there are limited options available to them and this potential new treatment, although at an early stage could provide a real lifeline and a better chance of survival, which can only be good news.”

Explore further: Breakthrough could make 'smart drugs' effective for many cancer patients

More information: www.ncri.org.uk/ncriconference … /abstracts/A186.html

Related Stories

Breakthrough could make 'smart drugs' effective for many cancer patients

June 27, 2011
(Medical Xpress) -- Newcastle and Harvard University reseachers have found that blocking a key component of the DNA repair process could extend the use of a new range of 'smart' cancer drugs called PARP inhibitors.

Bacteria shed light on new drug targets for inherited cancers

September 6, 2011
Cancer Research UK scientists have succeeded in purifying a protein found in bacteria that could reveal new drug targets for inherited breast and ovarian cancers - and other cancers linked to DNA repair faults. The study ...

Blocking molecular target could make more cancers treatable with PARP inhibitors

June 29, 2011
BOSTON--Researchers at Dana-Farber Cancer Institute have demonstrated a molecular strategy they say could make a much larger variety of tumors treatable with PARP inhibitors, a promising new class of cancer drugs.

Olaparib shows promise in treating ovarian cancer, even without BRCA mutations

August 21, 2011
The PARP inhibitor, olaparib, that has shown promise in women with an inherited mutation in their BRCA1 or BRCA2 gene (accounting for about 5-10% of breast and ovarian cancer cases), has, for the first time, been shown to ...

Heat helps cancer drugs battle cancer

May 10, 2011
(PhysOrg.com) -- Localized hyperthermia has been used occasionally with cancer drugs for some time, but until now, the reason it helps has been a mystery. In a report in the Proceedings of the National Academy of Sciences, ...

Recommended for you

CAR-T immunotherapy may help blood cancer patients who don't respond to standard treatments

October 20, 2017
Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine in St. Louis is one of the first centers nationwide to offer a new immunotherapy that targets certain blood cancers. Newly approved ...

Researchers pinpoint causes for spike in breast cancer genetic testing

October 20, 2017
A sharp rise in the number of women seeking BRCA genetic testing to evaluate their risk of developing breast cancer was driven by multiple factors, including celebrity endorsement, according to researchers at the University ...

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.