Finger (mal)formation reveals surprise function of desert DNA

November 23, 2011, Ecole Polytechnique Federale de Lausanne

Swiss scientists from the EPFL and the University of Geneva have discovered a genetic mechanism that defines the shape of our members in which, surprisingly, genes play only a secondary role.

The research published in Cell, online the 23rd of November, shows the mechanism is found in a DNA sequence that was thought, incorrectly, to play no role. This long string has seven enhancers which, when combined with one another, modulate the activity of the responsible for the formation of the fingers – an important fundamental discovery for the field of genetics. The discovery could notably help better understand anomalies that are transmitted from generation to generation such as welded fingers or extra or abnormally short fingers (Kantaputra syndrome) even if the genes appear perfectly normal.

Turbos on the genome

DNA is composed of only about 2% genes. But it has other types of sequences, such as enhancers that increase the activity of certain genes at key moments. "The discovery we have made is that the group of genes involved in finger growth is modulated by seven enhancers, not just one, and they combine through contact," says Thomas Montavon, lead author of the article and researcher at the EPFL.

When the fingers in the embryo begin to take , the string of DNA folds and the enhancers, located on different parts of the string, come into contact. They then bring together various proteins that stimulate the activity of the genes, and the fingers start to grow. If one of these seven enhancers is missing, the fingers will be shorter, or abnormally shaped. When two are missing, the defects are even more pronounced. Without enhancers, the genes work slowly, and generate only the beginnings of fingers.

How does the DNA fold in exactly the right way so that the enhancers will correctly do their job? The recently discovered process remains largely unexplained. "In other tissues, such as the brain, the string of folds differently," says Denis Duboule, director of the study and researcher at both the EPFL and the University of Geneva. "To our knowledge, it is only in the fingers that it adopts this shape."

An explanation for evolutionary diversity

Statistically, the seven enhancers involved in finger growth create seven opportunities for a mutation to occur. The flexibility of this mechanism, with no known equivalent to date, causes not only hereditary malformations, but also the many variations in the hands, legs and other appendages in nature. "Just think of some ungulates, which walk on a single finger, or the ostrich, which has only two, and the human hand, of course" explains Denis Duboule.

Other genetic processes may also function on the basis of a similar principle. This could explain the diversity of the products of evolution, in areas other than the , according to Denis Duboule. "When a mutation occurs on a gene, for instance in cystic fibrosis, it is often binary. This amounts to an 'all or nothing' situation. With the mechanism we have discovered, it is a 'more or less' situation. It is combined, it is modulated."

Explore further: Scientists complete first mapping of molecule found in human embryonic stem cells

Related Stories

Scientists complete first mapping of molecule found in human embryonic stem cells

July 21, 2011
Stem cell researchers at UCLA have generated the first genome-wide mapping of a DNA modification called 5-hydroxymethylcytosine (5hmC) in embryonic stem cells, and discovered that it is predominantly found in genes that are ...

From blue whales to earthworms, a common mechanism gives shape to living beings

October 13, 2011
Why don't our arms grow from the middle of our bodies? The question isn't as trivial as it appears. Vertebrae, limbs, ribs, tailbone ... in only two days, all these elements take their place in the embryo, in the right spot ...

Novel approach scores first success against elusive cancer gene

September 9, 2011
Dana-Farber Cancer Institute scientists have successfully disrupted the function of a cancer gene involved in the formation of most human tumors by tampering with the gene's "on" switch and growth signals, rather than targeting ...

Recommended for you

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

How incurable mitochondrial diseases strike previously unaffected families

January 15, 2018
Researchers have shown for the first time how children can inherit a severe - potentially fatal - mitochondrial disease from a healthy mother. The study, led by researchers from the MRC Mitochondrial Biology Unit at the University ...

Genes that aid spinal cord healing in lamprey also present in humans

January 15, 2018
Many of the genes involved in natural repair of the injured spinal cord of the lamprey are also active in the repair of the peripheral nervous system in mammals, according to a study by a collaborative group of scientists ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.