Glioblastoma multiforme in the Dock

November 14, 2011

Glioblastoma multiforme (GBM) is the most common malignant brain cancer in humans. Patients with GBM have a poor prognosis because it is a highly aggressive form of cancer that is commonly resistant to current therapies.

A team of researchers -- led by Bo Hu and Shi-Yuan Cheng, at the University of Pittsburgh Cancer Institute, Pittsburgh -- has now identified a molecular pathway that drives the aggressive cancerous nature of a substantial proportion of glioblastomas; specifically, those that overexpress the protein PDGFR-alpha. This pathway could represent a new for treating individuals with glioblastomas that overexpress PDGFR-alpha.

PDGFR-alpha is overexpressed in a substantial proportion of GBMs, and overexpression of this protein is associated with a and shorter survival time. Hu, Cheng, and colleagues found that PDGFR-alpha signaling in human glioblastoma cells triggered a signaling cascade that involved phosphorylation of the protein Dock180 at tyrosine residue 1811 (Dock180Y1811) and downstream activation of the protein Rac1, which led to tumor cell growth and invasion. In human glioblastoma cells, if Dock180 was manipulated so that it could not be phosphorylated at tyrosine residue 1811 PDGFR-alpha failed to promote tumor growth, survival, and invasion. Thus, these data define a signaling pathway of importance in driving the aggressive cancerous nature of glioblastomas that overexpress PDGFR-alpha.

Explore further: Researchers find potential therapeutic target for controlling obesity

More information: Activation of Rac1 by Src-dependent phosphorylation of Dock180Y1811 mediates PDGFR-alpha–stimulated glioma tumorigenesis in mice and humans, Journal of Clinical Investigation.

Related Stories

Researchers find potential therapeutic target for controlling obesity

June 14, 2011
A new study from Mount Sinai School of Medicine has found that a cellular signaling pathway governs the differentiation of cells into fat tissue or smooth muscle, which lines the vascular system. Engaging this signaling pathway ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.