Molecular corkscrew

November 8, 2011

Scientists from the universities of Zurich and Duisburg-Essen have discovered a specific function of the protein p97/VCP. They demonstrate that the protein repairs DNA breaks like a corkscrew, a repair mechanism that could also prove significant for cancer therapy.

Human genetic material is constantly at risk of injury from the environment. Possible causes of damage include metabolic processes, chemical substances or ionizing radiation, such as X-radiation. Even a low dose of radiation can cause breaks in the . Normally, these DNA breaks are repaired by the body's own proteins, but they can also cause cancer if the repair is unsuccessful.

The protein p97/VCP plays a key role in repairing DNA breaks. The research groups headed by Kristijan Ramadan from the University of Zurich's Institute of Veterinary Pharmacology and Hemmo Meyer from the University of Duisburg-Essen have discovered that p97/VCP aids DNA repair like a corkscrew. Proteins that accumulate at the break site are initially marked with remnants of the protein ubiquitin. These remnants bind to the p97/VCP protein and are removed like a cork. For the to be completed successfully, the precise spatial and temporal removal of the from the damage site is crucial.

The repair mechanism with p97/VCP and its inhibition could be important for cancer therapy. "By blocking p97/VCP's corkscrew activities, it should be possible to increase the impact of radio- or chemotherapy," says veterinary pharmacologist Kristijan Ramadan. Radiation causes extensive, often fatal damage to cancer cell DNA. The therapeutic effect could be improved further if, at the same time, the repair mechanism usually deployed in were to be inhibited with p97/VCP. "Maybe the with all its unpleasant side effects could even be reduced," concludes Ramadan.

Explore further: Scientists identify protein that improves DNA repair under stress

More information: Mayura Meerang, Danilo Ritz, Shreya Paliwal, Zuzana Garajova, Matthias Bosshard, Pavel Janscak, Ulrich Hübscher, Hemmo Meyer, and Kristijan Ramadan. The ubiquitin selective remodeling factor p97/VCP orchestrates the DNA damage response. Nat Cell Biol. October 23, 2011. doi: 10.1038/ncb2367

Related Stories

Recommended for you

As cells age, the fat content within them shifts

January 19, 2017

As cells age and stop dividing, their fat content changes, along with the way they produce and break down fat and other molecules classified as lipids, according to a new University at Buffalo study.

What causes sleepiness when sickness strikes

January 19, 2017

It's well known that humans and other animals are fatigued and sleepy when sick, but it's a microscopic roundworm that's providing an explanation of how that occurs, according to a study from researchers at the Perelman School ...

Soft robot helps the heart beat

January 18, 2017

Harvard University and Boston Children's Hospital researchers have developed a customizable soft robot that fits around a heart and helps it beat, potentially opening new treatment options for people suffering from heart ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.