How do we split our attention?

December 21, 2011, McGill University

McGill's Cognitive Neurophysiology Lab team finds that we are natural-born multi-taskers.

Imagine you're a hockey goalie, and two opposing players are breaking in alone on you, passing the puck back and forth. You're aware of the linesman skating in on your left, but pay him no mind. Your focus is on the puck and the two approaching players. As the action unfolds, how is your brain processing this intense moment of "multi-tasking"? Are you splitting your focus of into multiple "spotlights?" Are you using one "spotlight" and switching between objects very quickly? Or are you "zooming out" the spotlight and taking it all in at once?

These are the questions Julio Martinez-Trujillo, a cognitive neurophysiology specialist from McGill University, and his team set out to answer in a new study on multifocal attention. They found that, for the first time, there's evidence that we can pay attention to more than one thing at a time.

"When we multi-task and attend to multiple objects, our has been classically described as a "zoom lens" that extend over a region of space or as a spotlight that switches from one object to the other," Martinez-Trujillo, the lead author of the study, explained. "These modes of action of attention are problematic because when zooming out attention over an entire region we include objects of interest but also distracters in between. Thus, we waste processing resources on irrelevant distracting information. And when a single spotlight jumps from one object to another, there is a limit to how fast that could go and how can the brain accommodate such a rapid switch. Importantly, if we accept that attention works as a single spotlight we may also accept that the brain has evolved to pay attention to one thing at the time and therefore multi-tasking is not an ability that naturally fits our "

Martinez-Trujillo's approach in getting to the bottom of this long-standing was novel. The team recorded the activity of single neurons in the brains of two monkeys while the animals concentrated on two objects that circumvented a third 'distracter' object. The neural recordings showed that attention can in fact, be split into two "spotlights" corresponding to the relevant objects and excluding the in-between distracter.

"One implication of these findings is that our brain has evolved to attend to more than one object in parallel, and therefore to multi-task," said Martinez-Trujillo. "Though there are limits, our brains have this ability."

The researchers also found that the split of the "spotlight" is much more efficient when the distractors are very different from the objects being attended. Going back to the very apt hockey analogy, Martinez-Trujillo explained that if a Montreal Canadiens forward is paying attention to two Boston Bruins in yellow and black, he'll have a more difficult time ignoring the linesmen, also wearing black, than if he was in a similar situation but facing two Vancouver Canucks with blue and green uniforms, easily distinguishable from the linesmen in black'.

In the next generation of experiments, the researchers will explore the limits of our ability to split attention and multi-task – looking more closely at how the similarity between objects affects multi-tasking limits and how those variables can be integrated into a quantitative model.

This study was published this week in the journal Neuron.

Explore further: Attention and awareness aren't the same

Related Stories

Attention and awareness aren't the same

June 6, 2011
Paying attention to something and being aware of it seems like the same thing -they both involve somehow knowing the thing is there. However, a new study, which will be published in an upcoming issue of Psychological Science, ...

Filters that reduce 'brain clutter' identified

April 14, 2011
(PhysOrg.com) -- McGill researchers suggest malfunctions in neurons that filter visual information may be responsible for diseases such as ADHD and schizophrenia.

How our brains keep us focused

December 7, 2011
In a new study to appear in Neuron, scientists at the RIKEN Brain Science Institute (BSI) have uncovered mechanisms that help our brain to focus by efficiently routing only relevant information to perceptual brain regions. ...

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.