Breast cancer and heart disease may have common roots

December 20, 2011

Women who are at risk for breast cancer may also be at greater risk for heart disease, new research has found.

The majority of women with hereditary breast and ovarian cancer have a mutated form of the BRCA1 or BRCA2 genes, which normally suppress the growth of breast and ovarian tumours.

Dr. Subodh Verma, a cardiac surgeon at St. Michael's Hospital, said his research team was surprised to discover the genes also regulate .

Following a heart attack, mice with the mutated had a three-to-five times higher rate of death. This was largely due to the development of profound heart failure, possibly because their heart attacks were twice as severe as those in mice who did not have the mutated gene.

A similar two-fold increase in heart failure was observed when mice with a mutated BRCA1 or BRAC2 gene were treated with doxorubicin, one of the most common for patients with . In addition to studies in mice, the authors also verified this observation in human tissues.

The researchers believe that the mutated BRCA1/2 prevents DNA repair in that is essential to recovery after a heart attack.

Their findings were published in the journals Nature Communications and .

"Our findings suggest that individuals who are at risk of breast cancer may also be at a previously unrecognized risk of heart disease," Dr. Verma said. "More importantly, we now understand that breast cancer and heart disease -- the two leading causes of death for Canadian women – have a common biological basis, a common soil."

Dr. Verma emphasized that these findings may have important implications for patients. Knowing that the BRCA1/2 gene is essential to may lead to future treatments for anyone with heart disease, a leading cause of death worldwide. Women who carry this mutated gene now know they may also be at a higher risk for developing heart disease in addition to the risk of developing cancer.

Dr. Christine Brezden-Masley, an oncologist at St. Michael's and a co-author of the paper, said that while physicians knew doxorubicin was associated with , the new research shows women with the mutated BRCA1/2 gene are particularly sensitive to its toxicity.

"What this means is that when a patient has the mutated gene, I now have to think about how much doxorubicin I'm going to give them or whether we should consider an alternate therapy," Dr. Brezden-Masley said.

Related Stories

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.