Researchers shorten time for manufacturing of personalized ovarian cancer vaccine

December 26, 2011, University of Pennsylvania School of Medicine

(Medical Xpress) -- Researchers from the Perelman School of Medicine at the University of Pennsylvania are in the midst of testing a personalized, dendritic cell vaccine in patients with recurrent ovarian, primary peritoneal or fallopian tube cancer – a group of patients who typically have few treatment options. Now, they have shown they can shorten the time to manufacture this type of anti-cancer vaccine, which reduces costs of manufacturing the treatment while still yielding powerful dendritic cells that may be beneficial for these and a variety of other tumor types. The data is published in the December issue of PLoS ONE.

“We are very excited about this development,” says senior author George Coukos, MD, PhD, who directs the Research Center in Penn’s Abramson Cancer Center. “Our work proves that these dendritic can be manufactured with a reasonable cost and retain their potency after being loaded with patients’ tumor extract. This is a very personalized approach to immunotherapy, which can be easily prepared for most patients with ovarian cancer undergoing surgery to remove their tumors.”

Cancer researchers have long predicted that vaccines that stimulate a patient's own immune system to attack tumors should be able to control the disease. The use of dendritic cells is one especially promising avenue for immune therapy, particularly for patients with small tumors or those who are in remission. In ovarian cancer, this condition is often possible to achieve after aggressive surgery and conventional chemotherapy. At that point, dendritic cells presenting tumor antigen, and properly activated with a microbial extract (lipopolysaccharide) and cytokines, become able to mobilize the immune system to attack the cancer and restrain tumor progression.

Previous work from Penn showed that dendritic cell vaccines developed in culture over two days could shrink of pre-invasive breast cancers in patients when a single protein antigen was used with the dendritic cells. However, dendritic cell vaccines prepared from the cellular debris of whole tumors -- which is thought to be more powerful than single antigens -- previously required seven days of maturation in a dish.Coukos and colleagues report that in preclinical tests, dendritic cells exposed to pieces of whole tumors, called tumor lysate, and matured in culture for four days are just as robust as dendritic cells grown for seven days.

To determine whether a shorter maturation period was possible, the team isolated peripheral blood monocytes, a type of white blood cell, from ovarian cancer patients and healthy volunteers. Using established clinical-grade protocols, the team induced the cells to differentiate into immature dendritic cells and then exposed them to whole tumor lysate for two, four, or seven days.

When they compared protein markers on cells’ surfaces, they found that the majority of the dendritic cells remained immature at two days, whereas the majority of the cells were mature at day four. The difference, the authors explain, means that the day-four cells have machinery in place to process and present the complex mixture of proteins and antigens present in a whole tumor lysate. By contrast, the immature day-two cells can present a single peptide antigen on their surface, but lack the machinery to process the larger proteins or more complex mixtures of proteins, like those present in whole tumor lysate.

The team found that day-four dendritic cells exposed to whole tumor lysate induced T-cell responses from both patient and healthy donors in test tube experiments, and that the responses were similar to those triggered by day-seven dendritic cells.

"Given the overall superior performance of whole-tumor lysate preparations over molecularly defined antigens for cancer vaccines and the overall superiority of dendritic cell-based vaccines, our results provide important preclinical data for the rapid development of potent, highly immunogenic vaccines for treating many types," says lead author Cheryl Lai-Lai Chiang, PhD, a post-doctoral researcher in the Center for Ovarian Cancer Research.

More information about the vaccine clinical trial is available at clinicaltrials.gov.

Explore further: Stem cell approach primes immune system to fight cancer

Related Stories

Stem cell approach primes immune system to fight cancer

November 10, 2011
(Medical Xpress) -- Stem cell techniques have been used in the lab as a new way of priming the body’s own immune cells to attack cancer, in a proof-of-principle study by Oxford University scientists.

Recommended for you

Research team discovers drug compound that stops cancer cells from spreading

June 22, 2018
Fighting cancer means killing cancer cells. However, oncologists know that it's also important to halt the movement of cancer cells before they spread throughout the body. New research, published today in the journal Nature ...

Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant

June 21, 2018
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.

Existing treatment could be used for common 'untreatable' form of lung cancer

June 21, 2018
A cancer treatment already approved for use in certain types of cancer has been found to block cell growth in a common form of lung cancer for which there is currently no specific treatment available.

Novel therapy makes oxidative stress deadly to cancer

June 21, 2018
Oxidative stress can help tumors thrive, but one way novel cancer treatments work is by pushing levels to the point where it instead helps them die, scientists report.

Higher body fat linked to lower breast cancer risk in younger women

June 21, 2018
While obesity has been shown to increase breast cancer risk in postmenopausal women, a large-scale study co-led by a University of North Carolina Lineberger Comprehensive Cancer Center researcher found the opposite is true ...

Researchers uncover new target to stop cancer growth

June 21, 2018
Researchers at the University of Wisconsin-Madison have discovered that a protein called Munc13-4 helps cancer cells secrete large numbers of exosomes—tiny, membrane-bound packages containing proteins and RNAs that stimulate ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.