New strain of lab mice mimics human alcohol consumption patterns

December 12, 2011, Indiana University
Nicholas Grahame, Ph.D., associate professor of psychology in the School of Science at IUPUI, and School of Science doctoral student Liana M. Matson conduct research to gain a better understanding of the basic brain mechanism involved in alcohol consumption as well as greater insight into the toxic effects of alcohol on the brain, with the goal of developing therapies. Credit: School of Science at Indiana University-Purdue University Indianapolis

A line of laboratory mice developed by a researcher from the School of Science at Indiana University-Purdue University Indianapolis drinks more alcohol than other animal models and consumes it in a fashion similar to humans: choosing alcohol over other options and binge drinking.

Animal models previously available to alcohol abuse and alcoholism researchers do not get as drunk as the new strain, unless alcohol is the only choice of fluids, or alcohol is administered by the experimenter. When given the option, previously bred mouse lines continue to drink water even when they can select alcohol.

These new , selectively bred over 40 generations at the School of Science at IUPUI to prefer alcohol over all other choices, will help researchers explore new aspects of the behavioral and genetic determinants of alcoholism.

In a study published online ahead of print in the journal Addiction Biology on Nov. 29, senior author Nicholas Grahame, Ph.D., associate professor of psychology in the School of Science at IUPUI, reports on the mice he has bred since 1997. The rodents reach blood-alcohol levels of more than 260 mg/dl of alcohol daily, over three times the equivalent of the human legal driving limit and the approximate consumption level that the severest human alcoholics attain.

"The free-choice drinking demonstrated by the new mouse line provides a unique opportunity to study the excessive intake that often occurs in alcohol-dependent individuals and to explore the predisposing factors for excessive consumption, as well as the development of physiological, behavioral and toxicological outcomes following ," says Grahame, who is a biopsychologist specializing in alcoholism.

According to the National Institute on Alcohol Abuse and Alcoholism, part of the National Institutes of Health, an estimated 17.6 million Americans abuse alcohol or are alcohol dependent. and alcoholism can be treated but cannot be cured.

Mice share 80 percent of their genes with humans, so they are an excellent model to study alcoholism, a disease with a strong genetic component. The risk of developing alcoholism is known to be influenced by lifestyle. Animal models allow researchers to employ methods that they are unable to use in humans.

"This line of high-alcohol-seeking mice should be able to give us a better understanding of the basic brain mechanism involved in as well as greater insight into the toxic effects on the brain, with the goal of developing therapies," said Grahame, whose research focuses on behavioral genetics and behavioral pharmacology.

As with humans, the mice become intoxicated when the pace of alcohol consumption is faster than the liver can eliminate it. Typically it takes six or seven hours of continuous drinking for the new strain of mice to reach the highest levels of intoxication.

Doctoral candidate Liana M. Matson is a co-author of the study. She has conducted research focusing on when the mice drink and determined that they are nocturnal drinkers. This knowledge enabled the mice's blood-alcohol levels to be tested when at their highest level.

Undergraduate School of Science students Amy Buckingham and Nick Villalta assisted in the research by measuring intake and blood-alcohol levels in the new strain of high-alcohol-seeking mice. In a related study, they analyzed how drunk the mice became by testing how they performed on a balance beam.

Explore further: Heredity behind subjective effects of alcohol

Related Stories

Heredity behind subjective effects of alcohol

May 23, 2011
Scientists have long known that people who have a close relative with alcohol problems themselves run an increased risk of starting to abuse alcohol. The reason for this has not been known, but a new study from the University ...

Recommended for you

Scientists emulate the human blood-retinal barrier on a microfluidic chip

January 24, 2018
For some years, scientists have been seeking ways to reduce animal testing and accelerate clinical trials. In vitro assays with living cells are an alternative, but have limitations, as the interconnection and interaction ...

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.