Tireless research reveals secrets of the 'sleep hormone'

December 13, 2011, McGill University Health Centre

A team from the Research Institute of the McGill University Health Centre (RI-MUHC) and McGill University has made a major breakthrough by unraveling the inner workings of melatonin, also known as the "sleep hormone." The research, conducted in collaboration with scientists in Italy, reveals the key role played by the melatonin receptor in the brain that promotes deep, restorative sleep. This discovery led the researchers to develop a novel drug called UCM765, which selectively activates this receptor. The results, published in The Journal of Neuroscience, may pave the way for the development of new and promising treatments for insomnia, a common public health problem that affects millions of people worldwide.

"We've spent many years develop medications that act selectively on a single receptor to specifically promote deep sleep, which we believe is the key to curing insomnia," says Dr. Gabriella Gobbi, a researcher in psychiatry at the RI-MUHC and the study's principal investigator. "Deep sleep has significant restorative effects, as well as the ability to increase memory and boost metabolism, while lowering blood pressure and slowing the heart rate." To date most treatments for insomnia, such as benzodiazepines, have not been selective for deep sleep, and can lead to dependence and cognitive impairment.

The researchers became interested in melatonin because of its effect on cerebral activity, and its involvement in sleep, depression and anxiety. Melatonin is a critical hormone produced by the pineal gland (located in the brain) in the absence of light stimulation. This hormone, present throughout the animal kingdom, is responsible for regulating sleep and .

The research team discovered that two principal melatonin receptors, known as MT1 and MT2, played opposite roles in sleep regulation. "We discovered that MT1 receptors act on (REM) sleep and block non-REM sleep, while MT2 receptors favour non-REM sleep, also known as deep sleep," explains Dr. Gobbi, who is also an associate professor of psychiatry in the Faculty of Medicine at McGill. "Specifying the role of MT2 receptors in melatonin represent a major scientific breakthrough that may designate them as a promising novel target for future treatments of insomnia. This discovery also explains the modest hypnotic effect of the over-the-counter melatonin pills, which act on both conflicting receptors."

Using a drug called UCM765, developed in collaboration with a group of chemists, under the leadership of Professor Tarzia in Urbino and Professor Mor in Parma, Italy which selectively binds to the MT2 receptor, the researchers observed an increase in the phases of deep sleep in rats and mice. Most importantly, UCM765 acts in a brain area called the reticular thalamus, which is the main driver of deep sleep. "This new molecule, contrary to traditional treatments for insomnia, increases deep sleep without destroying the "architecture" of sleep. In other words, it increases the duration of deep sleep while keeping the REM sleep episodes the same," says Dr. Gobbi.

"The development of this pharmacology by means of targeting receptors to treat insomnia represents a major advancement in our ability to deal with this common health problem that affects people worldwide," concludes Dr. Vassilios Papadopoulos, Director of the Research Institute of the .

Explore further: Inducing non-REM sleep in mice by novel optogenetical control technique

More information: The Journal of Neuroscience: www.jneurosci.org/

Related Stories

Inducing non-REM sleep in mice by novel optogenetical control technique

July 20, 2011
Recently, optogenetics, which controls the activity of neuron using the light-activated protein, has been getting a lot of attention. This light-activated protein works like a switch of neurons by sensing specific color of ...

Recommended for you

Perinatal hypoxia associated with long-term cerebellar learning deficits and Purkinje cell misfiring

August 18, 2018
Oxygen deprivation associated with preterm birth leaves telltale signs on the brains of newborns in the form of alterations to cerebellar white matter at the cellular and the physiological levels. Now, an experimental model ...

CRISPR technology targets mood-boosting receptors in brain

August 17, 2018
An estimated 13 percent of Americans take antidepressant drugs for depression, anxiety, chronic pain or sleep problems. For the 14 million Americans who have clinical depression, roughly one third don't find relief with antidepressants.

People are more honest when using a foreign tongue, research finds

August 17, 2018
New UChicago-led research suggests that someone who speaks in a foreign language is probably more credible than the average native speaker.

Critical role of DHA on foetal brain development revealed

August 17, 2018
Duke-NUS researchers have found evidence that a natural form of Docosahexaenoic Acid (DHA) made by the liver called Lyso-Phosphatidyl-Choline (LPC-DHA), is critical for normal foetal and infant brain development, and that ...

Automated detection of focal epileptic seizures in a sentinel area of the human brain

August 17, 2018
Patients with focal epilepsy that does not respond to medications badly need alternative treatments.

Brain response study upends thinking about why practice speeds up motor reaction times

August 16, 2018
Researchers in the Department of Physical Medicine and Rehabilitation at Johns Hopkins Medicine report that a computerized study of 36 healthy adult volunteers asked to repeat the same movement over and over became significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.