Cell death researchers identify new Achilles heel in acute myeloid leukemia

January 17, 2012
Professor Andreas Strasser was one of the lead researchers in a study that identifies a new Achilles heel in acute myeloid leukemia. Credit: The Walter and Eliza Hall Institute of Medical Research

Melbourne researchers have discovered that acute myeloid leukaemia (AML), an aggressive blood cancer with poor prognosis, may be susceptible to medications that target a protein called Mcl-1.

The research team at the institute was led by Dr Stefan Glaser, from the institute's Cancer and division, and Professor Andreas Strasser, joint head of the institute's Molecular Genetics of Cancer Division, working in collaboration with scientists from the Australian Centre for and St. Vincent's Institute of in Melbourne, as well as Austrian and American researchers. The research is published in this week's edition of the journal & Development.

AML is the most common type of acute leukaemia (rapidly-developing cancers of immature blood ) in Australia. Some forms of AML occur in children, while other forms are more prevalent in adults over the age of 60. Patients are normally treated with chemotherapy, but even for the least severe forms of AML, the disease returns after chemotherapy in around one-third of cases. Of patients with the most severe forms of AML, fewer than one in six will survive for five years after diagnosis.

The research team determined that treatments that remove the protein Mcl-1 from AML cells can rapidly kill these aggressive cancer cells. Mcl-1 is a so-called 'pro-survival' protein, because it can make cells long-lived. Mcl-1 is part of the 'Bcl-2 family' of pro-survival proteins, many of which are known to be important controllers of cancer development and can render cancer cells resistant to anti-cancer treatments.

The gene for Mcl-1 was first discovered in AML cells, but until now it had not been realised that the Mcl-1 was critical for AML cells to live, Dr Glaser said. "Other research has already shown that high levels of Mcl-1 are associated with resistance to chemotherapy," said Dr Glaser. "What we have shown is that without Mcl-1, AML cells rapidly die. This is exciting because it identifies Mcl-1 as a potential target for new anti-cancer medications."

Because of the important role pro-survival Bcl-2 family proteins, including Mcl-1, play in cancer development and in the response of cancer cells to treatment, new classes of medications are being developed to block these proteins, making cancer cells die. One class of these medications, called BH3 mimetics, which inhibit certain pro-survival Bcl-2 family proteins, are currently in clinical trials for the treatment of some forms of leukaemia.

Dr Glaser is hopeful that in the future, new treatments for AML will be developed that work by specifically blocking Mcl-1. "We found that many types of AML cells were very dependent on Mcl-1 to survive", he said. "When Mcl-1 was depleted from the AML cells, they rapidly died. Importantly, non-cancerous blood cells were much less susceptible to dying when Mcl-1 was depleted. This means that, if Mcl-1 inhibitors are developed, there may be a 'treatment window' in which AML cells are killed, while normal blood cells that are essential for health can be spared, helping patients recover from the treatment much better. We are optimistic that in the future, Mcl-1 inhibitors may improve the outlook for AML patients, who currently have a very ."

Explore further: Two-faced leukemia?

Related Stories

Two-faced leukemia?

December 12, 2011
One kind of leukemia sometimes masquerades as another, according to a study published online this week in the Journal of Experimental Medicine.

First comprehensive DNA study of mast cell leukemia uncovers clues that could improve therapy

December 16, 2011
Cancer researchers at Cold Spring Harbor Laboratory (CSHL) have carried out the first comprehensive study of the changes seen in the DNA of a patient with mast cell leukemia (MCL), an extremely aggressive subtype of acute ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.