Entry point for hepatitis C infection identified

January 24, 2012

A molecule embedded in the membrane of human liver cells that aids in cholesterol absorption also allows the entry of hepatitis C virus, the first step in hepatitis C infection, according to research at the University of Illinois at Chicago College of Medicine.

The cholesterol receptor offers a promising new target for anti-viral therapy, for which an approved drug may already exist, say the researchers, whose findings were reported online in advance of publication in .

An estimated 4.1 million Americans are infected with , or HCV, which attacks the liver and leads to inflammation, according to the National Institutes of Health. Most people have no symptoms initially and may not know they have the infection until shows up decades later during routine medical tests.

Previous studies showed that cholesterol was somehow involved in HCV infection. The UIC researchers suspected that a receptor called NPC1L1, known to help maintain cholesterol balance might also be transporting the virus into the cell.

The receptor is common in the gut of many species -- but is found on liver cells only in humans and chimpanzees, says Susan Uprichard, assistant professor in medicine and microbiology and immunology and principal investigator in the study. These primates, she said, are the only animals that can be infected by HCV.

Uprichard and her coworkers showed that knocking down or blocking access to the NPC1L1 receptor prevented the virus from entering and infecting cells.

Bruno Sainz, Jr., UIC postdoctoral research associate in medicine and first author of the paper, said because the receptor is involved in cholesterol metabolism it was already well-studied. A drug that "specifically and uniquely targets NPC1L1" already exists and is approved for use to lower , he said.

The FDA-approved drug ezetimibe (sold under the trade-name Zetia) is readily available and perfectly targeted to the receptor, Sainz said, so the researchers had an ideal method for testing NPC1L1's involvement in HCV infection.

They used the drug to block the receptor before, during and after inoculation with the virus, in cell culture and in a small-animal model, to evaluate the receptor's role in infection and the drug's potential as an anti-hepatitis agent.

The researchers showed that ezetimibe inhibited HCV infection in cell culture and in mice transplanted with human . And, unlike any currently available drugs, ezetimibe was able to inhibit infection by all six types of HCV.

The study, Uprichard said, opens up a number of possibilities for therapeutics.

Hepatitis C is the leading cause for liver transplantation in the U.S., but infected patients have problems after transplant because the virus attacks the new liver, Uprichard said.

While current drugs are highly toxic and often cannot be tolerated by transplant patients taking immunosuppressant drugs, ezetimibe is quite safe and has been used long-term without harm by people to control their cholesterol, Uprichard said. Because it prevents entry of the virus into cells, ezetimibe may help protect the new liver from infection.

For patients with chronic , ezetimibe may be able to be used in combination with current drugs.

"We forsee future HCV therapy as a drug-cocktail approach, like that used against AIDS," Uprichard said. "Based on cell culture and mouse model data, we expect , an entry inhibitor, may have tremendous synergy with current anti-HCV drugs resulting in an improvement in the effectiveness of treatment."

Explore further: Researchers identify potential new therapy approach for hepatitis C

Related Stories

Researchers identify potential new therapy approach for hepatitis C

January 16, 2012
Researchers at the University of British Columbia have found a new way to block infection from the hepatitis C virus (HCV) in the liver that could lead to new therapies for those affected by this and other infectious diseases.

Green tea flavonoid may prevent reinfection with hepatitis C virus following liver transplantation

December 1, 2011
German researchers have determined that epigallocatechin-3-gallate (EGCG)—a flavonoid found in green tea—inhibits the hepatitis C virus (HCV) from entering liver cells. Study findings available in the December issue ...

University launches iphone app for hepatitis treatment

November 22, 2011
The University of Liverpool has launched an iphone app, HEP i-chart, that provides Hepatitis C (HCV) patients with quick and easy access to the latest information about drug interactions.

Recommended for you

Aging impairs innate immune response to flu

December 13, 2017
Aging impairs the immune system's response to the flu virus in multiple ways, weakening resistance in older adults, according to a Yale study. The research reveals why older people are at increased risk of illness and death ...

Drug blocks Zika, other mosquito-borne viruses in cell cultures

December 12, 2017
If there was a Mafia crime family of the virus world, it might be flaviviruses.

Study seeks to aid diagnosis, management of catatonia

December 11, 2017
Catatonia, a syndrome of motor, emotional and behavioral abnormalities frequently characterized by muscular rigidity and a trance-like mental stupor and at times manifesting with great excitement or agitation, can occur during ...

New compound stops progressive kidney disease in its tracks

December 7, 2017
Progressive kidney diseases, whether caused by obesity, hypertension, diabetes, or rare genetic mutations, often have the same outcome: The cells responsible for filtering the blood are destroyed. Reporting today in Science, ...

New Lyme disease tests could offer quicker, more accurate detection

December 7, 2017
New tests to detect early Lyme disease - which is increasing beyond the summer months -could replace existing tests that often do not clearly identify the infection before health problems occur.

Spinal tap needle type impacts the risk of complications

December 6, 2017
The type of needle used during a lumbar puncture makes a significant difference in the subsequent occurrence of headache, nerve irritation and hearing disturbance in patients, according to a study by Hamilton medical researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.