Researchers identify genetic signatures of exceptional longevity in re-published study

January 18, 2012, Boston University Medical Center

While environment and family history are factors in healthy aging, genetic variants play a critical and complex role in conferring exceptional longevity, according to researchers from the Boston University Schools of Public Health and Medicine, Boston Medical Center, IRCCS Multimedica in Milan, Italy, and Yale University.

Published in , after peer review, the research findings are the corrected version of work originally published in Science in July 2010. The revised publication includes additional authors who independently assessed and helped to produce a valid genotype data set, for which the same analysis as in the original paper was performed. It also contains an additional replication data set of subjects with an average age of 107.

are a model of healthy aging, as the onset of disability in these individuals is generally delayed until they are well into their mid-90s. Because exceptional longevity can run strongly in families, and numerous animal studies have suggested a strong on , the researchers set out to determine which genetic variants play roles in human survival beyond 100 years of age. They used a well-established Bayesian for determining which single (SNPs, or genetic variants) could, as a group, be used to categorize subjects as centenarians versus controls, based solely upon the . The predictive sensitivity of the model they developed, which contains 281 SNPs, increased with the age of the subject, supporting the hypothesis that genes play an increasingly strong role in survival in centenarians. The model was able to predict exceptional longevity with 60 to 85 percent accuracy, depending on the average age of the replication sample that was used. The older the sample, the stronger the sensitivity. Many of the 130 known genes associated with the SNPs in the have been shown by other gerontologists to play roles in age-related diseases and aging, said the study's lead researchers, Paola Sebastiani, PhD, professor of biostatistics at the BU School of Public Health, and Thomas Perls, MD, MPH, associate professor of medicine at the BU School of Medicine.

"This is a useful step towards meaningful predictive medicine and personal genomics," said Dr. Perls, a geriatrician at Boston Medical Center. "When people can do this kind of analysis on whole genome sequences for traits that have important genetic components, the predictive value should be even better."

The new study differs from the earlier study, voluntarily retracted by the authors, in several ways: A select group of faulty SNPs was eliminated from this study ;an additional sample of extremely old study subjects was added; and researchers from Yale University were called in to independently validate the data and methodology. The corrected study, as did the original, found that subjects who shared the same profile of variations for genetic markers in the model appeared to share similar levels of risk for various traits or diseases associated with exceptional longevity -- most notably, in their ages of survival. "Further study of these genetic characteristics may yield a better understanding of the genetic and biological bases of delaying or escaping age-related diseases and achieving longer survival," Dr. Perls said."The novel approach to genetic data that is described here is likely applicable to other complex inherited traits, and we look forward to other research groups applying these methods to their data."

Explore further: Genetic predisposition to disease common in two supercentenarians: study

More information: The full study is available here: dx.plos.org/10.1371/journal.pone.0029848

Related Stories

Genetic predisposition to disease common in two supercentenarians: study

January 3, 2012
The first-ever published whole-genome sequences of not just one, but two supercentenarians, aged more than 114 years, reveal that both unusual and common genetic phenomena contribute to the genetic background of extreme human ...

18 novel subtype-dependent genetic variants for autism spectrum disorders revealed

April 27, 2011
By dividing individuals with autism spectrum disorders (ASD) into four subtypes according to similarity of symptoms and reanalyzing existing genome-wide genetic data on these individuals vs. controls, researchers at the George ...

Recommended for you

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

The surprising role of gene architecture in cell fate decisions

January 16, 2018
Scientists read the code of life—the genome—as a sequence of letters, but now researchers have also started exploring its three-dimensional organisation. In a paper published in Nature Genetics, an interdisciplinary research ...

Study advances gene therapy for glaucoma

January 16, 2018
While testing genes to treat glaucoma by reducing pressure inside the eye, University of Wisconsin-Madison scientists stumbled onto a problem: They had trouble getting efficient gene delivery to the cells that act like drains ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.