Researchers identify genetic signatures of exceptional longevity in re-published study

January 18, 2012

While environment and family history are factors in healthy aging, genetic variants play a critical and complex role in conferring exceptional longevity, according to researchers from the Boston University Schools of Public Health and Medicine, Boston Medical Center, IRCCS Multimedica in Milan, Italy, and Yale University.

Published in , after peer review, the research findings are the corrected version of work originally published in Science in July 2010. The revised publication includes additional authors who independently assessed and helped to produce a valid genotype data set, for which the same analysis as in the original paper was performed. It also contains an additional replication data set of subjects with an average age of 107.

are a model of healthy aging, as the onset of disability in these individuals is generally delayed until they are well into their mid-90s. Because exceptional longevity can run strongly in families, and numerous animal studies have suggested a strong on , the researchers set out to determine which genetic variants play roles in human survival beyond 100 years of age. They used a well-established Bayesian for determining which single (SNPs, or genetic variants) could, as a group, be used to categorize subjects as centenarians versus controls, based solely upon the . The predictive sensitivity of the model they developed, which contains 281 SNPs, increased with the age of the subject, supporting the hypothesis that genes play an increasingly strong role in survival in centenarians. The model was able to predict exceptional longevity with 60 to 85 percent accuracy, depending on the average age of the replication sample that was used. The older the sample, the stronger the sensitivity. Many of the 130 known genes associated with the SNPs in the have been shown by other gerontologists to play roles in age-related diseases and aging, said the study's lead researchers, Paola Sebastiani, PhD, professor of biostatistics at the BU School of Public Health, and Thomas Perls, MD, MPH, associate professor of medicine at the BU School of Medicine.

"This is a useful step towards meaningful predictive medicine and personal genomics," said Dr. Perls, a geriatrician at Boston Medical Center. "When people can do this kind of analysis on whole genome sequences for traits that have important genetic components, the predictive value should be even better."

The new study differs from the earlier study, voluntarily retracted by the authors, in several ways: A select group of faulty SNPs was eliminated from this study ;an additional sample of extremely old study subjects was added; and researchers from Yale University were called in to independently validate the data and methodology. The corrected study, as did the original, found that subjects who shared the same profile of variations for genetic markers in the model appeared to share similar levels of risk for various traits or diseases associated with exceptional longevity -- most notably, in their ages of survival. "Further study of these genetic characteristics may yield a better understanding of the genetic and biological bases of delaying or escaping age-related diseases and achieving longer survival," Dr. Perls said."The novel approach to genetic data that is described here is likely applicable to other complex inherited traits, and we look forward to other research groups applying these methods to their data."

Explore further: Genetic predisposition to disease common in two supercentenarians: study

More information: The full study is available here: dx.plos.org/10.1371/journal.pone.0029848

Related Stories

Genetic predisposition to disease common in two supercentenarians: study

January 3, 2012
The first-ever published whole-genome sequences of not just one, but two supercentenarians, aged more than 114 years, reveal that both unusual and common genetic phenomena contribute to the genetic background of extreme human ...

18 novel subtype-dependent genetic variants for autism spectrum disorders revealed

April 27, 2011
By dividing individuals with autism spectrum disorders (ASD) into four subtypes according to similarity of symptoms and reanalyzing existing genome-wide genetic data on these individuals vs. controls, researchers at the George ...

Recommended for you

The 16 genetic markers that can cut a life story short

July 27, 2017
The answer to how long each of us will live is partly encoded in our genome. Researchers have identified 16 genetic markers associated with a decreased lifespan, including 14 new to science. This is the largest set of markers ...

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.