Study shows how neurons interact, could lead to new treatment for addiction

January 18, 2012, Harvard University

Harvard scientists have developed the fullest picture yet of how neurons in the brain interact to reinforce behaviors ranging from learning to drug use, a finding that might open the door to possible breakthroughs in the treatment of addiction.

The finding is the result of a year-long effort by a team of researchers led by associate professor of Naoshige Uchida to examine a brain process known as reward . Thought to be a key component of learning, prediction error was long believed to be the product of dopamine firing in response to an unexpected "reward," thus reinforcing the behavior that led to the reward.

But Uchida and colleagues from Harvard and Beth Israel Deaconess Medical Center report in the Jan. 18 issue of Nature that reward prediction error is actually the product of a complex interplay between two classes of neurons – one that relies on dopamine and an inhibitory class of neuron that uses the neurotransmitter GABA.

"Until now, no one knew how these GABA neurons were involved in the reward and punishment cycle," Uchida said. "What we believe is happening is that they are inhibiting the dopamine neurons, so the two are working together to make the reward error computation."

Before Uchida and his team could prove that GABA neurons are involved in the computation, however, they had to be sure what type of cells they were observing.

The challenge in studying either dopamine or GABA neurons is that the two cell types are intermingled in a relatively small area of the brain, making it difficult for researchers to definitively know which type they are observing. Ultimately, researchers developed an elegant solution to the problem.

Researchers genetically altered the neurons in two groups of mice – one for the dopamine neurons, the other for GABA neurons – to fire when hit by a pulse of laser light. Once researchers were certain they were measuring the correct type of neuron, they used electrodes to measure whether and when the neurons fired in response to expected and actual rewards.

The results, Uchida said, showed that while firing of dopamine neurons signaled reward prediction error, firing of GABA neurons signaled an expected reward. Taken together, GABA neurons help dopamine neurons calculate reward prediction error.

The finding is particularly important, Uchida said, because it sheds new light on how behaviors can be reinforced, either through normal brain function, or by damaging the way the two types of neurons interact.

"What happens with drug abuse is that many drugs, such as opioids and cannabinoids, target the GABA neurons," he said. "What we are hypothesizing is that, by inhibiting those GABA neurons, you can lose this feedback cycle, so you keep getting reinforcing signals from the .

"This is a new way of thinking about addiction in general," Uchida continued. "Based on this theory, I believe you may be able to develop new theories or treatments for ."

Explore further: Modulation of inhibitory output is key function of antiobesity hormone

Related Stories

Modulation of inhibitory output is key function of antiobesity hormone

July 13, 2011
Scientists have known for some time that the hormone leptin acts in the brain to prevent obesity, but the specific underlying neurocircuitry has remained a mystery. Now, new research published by Cell Press in the July 14 ...

Conducting how neurons fire

November 25, 2011
Contrary to expectations that the neurotransmitter GABA only inhibited neuronal firing in the adult brain, RIKEN-led research has shown that it can also excite interneurons in the hippocampus of the rat brain by changing ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Argiod
5 / 5 (1) Jan 18, 2012
I'll be more impressed when they can find a way to treat people with an addiction to money and power... i.e., when they find a way to cure political addiction and the urge to control other people.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.