Smaller sibling protein calls the shots in cell division

January 3, 2012, Georgia Health Sciences University
Scientists have found at least one instance when the smaller sibling gets to call the shots and cancer patients may one day benefit. Credit: Phil Jones, GHSU Photographer

Scientists have found at least one instance when the smaller sibling gets to call the shots and cancer patients may one day benefit.

The protein Chk1 has long been known to be a in cell development: it keeps normal cells and damaged cells from dividing until their DNA has been fully replicated or repaired. Now scientists at Georgia Health Sciences University and the California Institute of Technology have discovered a shorter form they've dubbed Chk1-S ("S" stands for short) that essentially neutralizes its longer sibling so cell division can proceed.

That shorter form is in higher levels in as well as , both of which require accelerated cell division. But the scientists also have shown that very high levels of Chk1-S actually reduce and prompt premature cell division and death in other cells.

"Chk1 is needed for division of all cells, even cancer cells, so if you inhibit it completely by over-expressing Chk1-S, those cells also will not grow," said Dr. Navjotsingh Pabla, a at Caltech. Chk1-S expression is nearly zero in normal, non-dividing cells.

These findings, published in , point toward the short form's potential to help diagnose and/or treat cancer, they said. Chk1 inhibitors, which promote abnormal cell division – and likely cell death – to occur before DNA replication/repair is complete, already are being tested on patients.

"Chk1-S is only expressed at a time when DNA is replicated or repaired so it binds to its sibling protein, Chk1, antagonizing it so now the cell can divide," said Dr. Zheng Dong, cell biologist at GHSU and the Charlie Norwood Veterans Affairs Medical Center in Augusta. "The question that has been hanging on for many years is: How is Chk1 regulated?"

They found that significantly increasing levels of Chk1-S induces cell division regardless of whether DNA replication or repair is complete. Incomplete DNA replication or repair can result in spontaneous cell suicide but also can result in chromosomal or genetic defects leading to cancer cell production. Additionally, cancer cells purposefully mutate to resist treatment. Pabla speculates that expression of the shorter version may be awry in cancer cells. "We are very interested in pursuing that."

"It's exciting to have found an important regulator of such an important protein that we think may contribute to cancer as well as its treatment," Dong said.

Chk1 and Chk1-S are made by the same gene they are just spliced differently. One way Chk1 gets turned on is by phosphorylation, or adding phosphate, which can activate or deactivate a protein. The level of phosphorylation of Chk1 is particularly dramatic when DNA repair is needed. Chk1, in turn, works to temporarily halt the cell cycle by phosphorylating another protein. Interestingly, Chk1-S cannot bind to its when Chk1 is phosphorylated. It's known that mental retardation can result from mutation of ATR, a damage-sensing protein that phosphorylates Chk1.

While the biggest burst of cell division occurs during development, it continues lifelong in areas such as the blood, skin and gastrointestinal tract where cell turnover is high. "Lots of tissues need to regenerate," said Dong.

Explore further: Scientists defeat hurdle to eradicating inactive multiple myeloma cells

Related Stories

Scientists defeat hurdle to eradicating inactive multiple myeloma cells

November 14, 2011
Researchers at Virginia Commonwealth University Massey Cancer Center have developed a novel treatment strategy for multiple myeloma that delivers a deadly one-two blow to kill even the most inactive, or cytokinetically quiescent, ...

Recommended for you

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

Blood-vessel-on-a-chip provides insight into new anti-inflammatory drug candidate

January 15, 2018
One of the most important and fraught processes in the human body is inflammation. Inflammatory responses to injury or disease are crucial for recruiting the immune system to help the body heal, but inflammation can also ...

Molecule produced by fat cells reduces obesity and diabetes in mice

January 15, 2018
UC San Francisco researchers have discovered a new biological pathway in fat cells that could explain why some people with obesity are at high risk for metabolic diseases such as type 2 diabetes. The new findings—demonstrated ...

Obese fat becomes inflamed and scarred, which may make weight loss harder

January 12, 2018
The fat of obese people becomes distressed, scarred and inflamed, which can make weight loss more difficult, research at the University of Exeter has found.

Optimized human peptide found to be an effective antibacterial agent

January 11, 2018
A team of researchers in the Netherlands has developed an effective antibacterial ointment based on an optimized human peptide. In their paper published in the journal Science Translational Medicine, the group describes developing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.